改进 I/O 项目

ch13-03-improving-our-io-project.md
commit 2cd1b5593d26dc6a03c20f8619187ad4b2485552

有了这些关于迭代器的新知识,我们可以使用迭代器来改进第十二章中 I/O 项目的实现来使得代码更简洁明了。让我们看看迭代器如何能够改进 Config::build 函数和 search 函数的实现。

使用迭代器并去掉 clone

在示例 12-6 中,我们增加了一些代码获取一个 String slice 并创建一个 Config 结构体的实例,它们索引 slice 中的值并克隆这些值以便 Config 结构体可以拥有这些值。在示例 13-17 中重现了第十二章结尾示例 12-23 中 Config::build 函数的实现:

文件名:src/lib.rs

use std::env; use std::error::Error; use std::fs; pub struct Config { pub query: String, pub file_path: String, pub ignore_case: bool, } impl Config { pub fn build(args: &[String]) -> Result<Config, &'static str> { if args.len() < 3 { return Err("not enough arguments"); } let query = args[1].clone(); let file_path = args[2].clone(); let ignore_case = env::var("IGNORE_CASE").is_ok(); Ok(Config { query, file_path, ignore_case, }) } } pub fn run(config: Config) -> Result<(), Box<dyn Error>> { let contents = fs::read_to_string(config.file_path)?; let results = if config.ignore_case { search_case_insensitive(&config.query, &contents) } else { search(&config.query, &contents) }; for line in results { println!("{line}"); } Ok(()) } pub fn search<'a>(query: &str, contents: &'a str) -> Vec<&'a str> { let mut results = Vec::new(); for line in contents.lines() { if line.contains(query) { results.push(line); } } results } pub fn search_case_insensitive<'a>( query: &str, contents: &'a str, ) -> Vec<&'a str> { let query = query.to_lowercase(); let mut results = Vec::new(); for line in contents.lines() { if line.to_lowercase().contains(&query) { results.push(line); } } results } #[cfg(test)] mod tests { use super::*; #[test] fn case_sensitive() { let query = "duct"; let contents = "\ Rust: safe, fast, productive. Pick three. Duct tape."; assert_eq!(vec!["safe, fast, productive."], search(query, contents)); } #[test] fn case_insensitive() { let query = "rUsT"; let contents = "\ Rust: safe, fast, productive. Pick three. Trust me."; assert_eq!( vec!["Rust:", "Trust me."], search_case_insensitive(query, contents) ); } }

示例 13-17:重现示例 12-23 的 Config::build 函数

那时我们说过不必担心低效的 clone 调用了,因为将来可以对它们进行改进。好吧,就是现在!

起初这里需要 clone 的原因是参数 args 中有一个 String 元素的 slice,而 build 函数并不拥有 args。为了能够返回 Config 实例的所有权,我们需要克隆 Config 中字段 queryfile_path 的值,这样 Config 实例就能拥有这些值。

在学习了迭代器之后,我们可以将 build 函数改为获取一个有所有权的迭代器作为参数而不是借用 slice。我们将使用迭代器功能之前检查 slice 长度和索引特定位置的代码。这会明确 Config::build 的工作因为迭代器会负责访问这些值。

一旦 Config::build 获取了迭代器的所有权并不再使用借用的索引操作,就可以将迭代器中的 String 值移动到 Config 中,而不是调用 clone 分配新的空间。

直接使用返回的迭代器

打开 I/O 项目的 src/main.rs 文件,它看起来应该像这样:

文件名:src/main.rs

use std::env; use std::process; use minigrep::Config; fn main() { let args: Vec<String> = env::args().collect(); let config = Config::build(&args).unwrap_or_else(|err| { eprintln!("Problem parsing arguments: {err}"); process::exit(1); }); // --snip-- if let Err(e) = minigrep::run(config) { eprintln!("Application error: {e}"); process::exit(1); } }

首先我们修改第十二章结尾示例 12-24 中的 main 函数的开头为示例 13-18 中的代码。在更新 Config::build 之前这些代码还不能编译:

文件名:src/main.rs

use std::env; use std::process; use minigrep::Config; fn main() { let config = Config::build(env::args()).unwrap_or_else(|err| { eprintln!("Problem parsing arguments: {err}"); process::exit(1); }); // --snip-- if let Err(e) = minigrep::run(config) { eprintln!("Application error: {e}"); process::exit(1); } }

示例 13-25:将 env::args 的返回值传递给 Config::build

env::args 函数返回一个迭代器!不同于将迭代器的值收集到一个 vector 中接着传递一个 slice 给 Config::build,现在我们直接将 env::args 返回的迭代器的所有权传递给 Config::build

接下来需要更新 Config::build 的定义。在 I/O 项目的 src/lib.rs 中,将 Config::build 的签名改为如示例 13-19 所示。这仍然不能编译因为我们还需更新函数体:

文件名:src/lib.rs

use std::env; use std::error::Error; use std::fs; pub struct Config { pub query: String, pub file_path: String, pub ignore_case: bool, } impl Config { pub fn build( mut args: impl Iterator<Item = String>, ) -> Result<Config, &'static str> { // --snip-- if args.len() < 3 { return Err("not enough arguments"); } let query = args[1].clone(); let file_path = args[2].clone(); let ignore_case = env::var("IGNORE_CASE").is_ok(); Ok(Config { query, file_path, ignore_case, }) } } pub fn run(config: Config) -> Result<(), Box<dyn Error>> { let contents = fs::read_to_string(config.file_path)?; let results = if config.ignore_case { search_case_insensitive(&config.query, &contents) } else { search(&config.query, &contents) }; for line in results { println!("{line}"); } Ok(()) } pub fn search<'a>(query: &str, contents: &'a str) -> Vec<&'a str> { let mut results = Vec::new(); for line in contents.lines() { if line.contains(query) { results.push(line); } } results } pub fn search_case_insensitive<'a>( query: &str, contents: &'a str, ) -> Vec<&'a str> { let query = query.to_lowercase(); let mut results = Vec::new(); for line in contents.lines() { if line.to_lowercase().contains(&query) { results.push(line); } } results } #[cfg(test)] mod tests { use super::*; #[test] fn case_sensitive() { let query = "duct"; let contents = "\ Rust: safe, fast, productive. Pick three. Duct tape."; assert_eq!(vec!["safe, fast, productive."], search(query, contents)); } #[test] fn case_insensitive() { let query = "rUsT"; let contents = "\ Rust: safe, fast, productive. Pick three. Trust me."; assert_eq!( vec!["Rust:", "Trust me."], search_case_insensitive(query, contents) ); } }

示例 13-19:以迭代器作为参数更新 Config::build 的签名

env::args 函数的标准库文档显示,它返回的迭代器的类型为 std::env::Args,同时这个类型实现了 Iterator trait 并返回 String 值。

我们已经更新了 Config::build 函数的签名,因此参数 args 有一个带有 trait bound impl Iterator<Item = String> 的泛型类型,而不是 &[String]。这里用到了第十章 “trait 作为参数” 部分讨论过的 impl Trait 语法意味着 args 可以是任何实现了 Iterator 的类型并返回 String 项(item)。

因为我们拥有 args 的所有权,并且将通过对其进行迭代来改变 args ,所以我们可以将 mut 关键字添加到 args 参数的规范中以使其可变。

使用 Iterator trait 代替索引

接下来,我们将修改 Config::build 的内容。因为 args 实现了 Iterator trait,因此我们知道可以对其调用 next 方法!示例 13-20 更新了示例 12-23 中的代码,以使用 next 方法:

文件名:src/lib.rs

use std::env; use std::error::Error; use std::fs; pub struct Config { pub query: String, pub file_path: String, pub ignore_case: bool, } impl Config { pub fn build( mut args: impl Iterator<Item = String>, ) -> Result<Config, &'static str> { args.next(); let query = match args.next() { Some(arg) => arg, None => return Err("Didn't get a query string"), }; let file_path = match args.next() { Some(arg) => arg, None => return Err("Didn't get a file path"), }; let ignore_case = env::var("IGNORE_CASE").is_ok(); Ok(Config { query, file_path, ignore_case, }) } } pub fn run(config: Config) -> Result<(), Box<dyn Error>> { let contents = fs::read_to_string(config.file_path)?; let results = if config.ignore_case { search_case_insensitive(&config.query, &contents) } else { search(&config.query, &contents) }; for line in results { println!("{line}"); } Ok(()) } pub fn search<'a>(query: &str, contents: &'a str) -> Vec<&'a str> { let mut results = Vec::new(); for line in contents.lines() { if line.contains(query) { results.push(line); } } results } pub fn search_case_insensitive<'a>( query: &str, contents: &'a str, ) -> Vec<&'a str> { let query = query.to_lowercase(); let mut results = Vec::new(); for line in contents.lines() { if line.to_lowercase().contains(&query) { results.push(line); } } results } #[cfg(test)] mod tests { use super::*; #[test] fn case_sensitive() { let query = "duct"; let contents = "\ Rust: safe, fast, productive. Pick three. Duct tape."; assert_eq!(vec!["safe, fast, productive."], search(query, contents)); } #[test] fn case_insensitive() { let query = "rUsT"; let contents = "\ Rust: safe, fast, productive. Pick three. Trust me."; assert_eq!( vec!["Rust:", "Trust me."], search_case_insensitive(query, contents) ); } }

示例 13-20:修改 Config::build 的函数体来使用迭代器方法

请记住 env::args 返回值的第一个值是程序的名称。我们希望忽略它并获取下一个值,所以首先调用 next 并不对返回值做任何操作。之后对希望放入 Config 中字段 query 调用 next。如果 next 返回 Some,使用 match 来提取其值。如果它返回 None,则意味着没有提供足够的参数并通过 Err 值提早返回。对 file_path 值进行同样的操作。

使用迭代器适配器来使代码更简明

I/O 项目中其他可以利用迭代器的地方是 search 函数,示例 13-21 中重现了第十二章结尾示例 12-19 中此函数的定义:

文件名:src/lib.rs

use std::error::Error; use std::fs; pub struct Config { pub query: String, pub file_path: String, } impl Config { pub fn build(args: &[String]) -> Result<Config, &'static str> { if args.len() < 3 { return Err("not enough arguments"); } let query = args[1].clone(); let file_path = args[2].clone(); Ok(Config { query, file_path }) } } pub fn run(config: Config) -> Result<(), Box<dyn Error>> { let contents = fs::read_to_string(config.file_path)?; Ok(()) } pub fn search<'a>(query: &str, contents: &'a str) -> Vec<&'a str> { let mut results = Vec::new(); for line in contents.lines() { if line.contains(query) { results.push(line); } } results } #[cfg(test)] mod tests { use super::*; #[test] fn one_result() { let query = "duct"; let contents = "\ Rust: safe, fast, productive. Pick three."; assert_eq!(vec!["safe, fast, productive."], search(query, contents)); } }

示例 13-21:示例 12-19 中 search 函数的定义

可以通过使用迭代器适配器方法来编写更简明的代码。这也避免了一个可变的中间 results vector 的使用。函数式编程风格倾向于最小化可变状态的数量来使代码更简洁。去掉可变状态可能会使得将来进行并行搜索的增强变得更容易,因为我们不必管理 results vector 的并发访问。示例 13-22 展示了该变化:

文件名:src/lib.rs

use std::env; use std::error::Error; use std::fs; pub struct Config { pub query: String, pub file_path: String, pub ignore_case: bool, } impl Config { pub fn build( mut args: impl Iterator<Item = String>, ) -> Result<Config, &'static str> { args.next(); let query = match args.next() { Some(arg) => arg, None => return Err("Didn't get a query string"), }; let file_path = match args.next() { Some(arg) => arg, None => return Err("Didn't get a file path"), }; let ignore_case = env::var("IGNORE_CASE").is_ok(); Ok(Config { query, file_path, ignore_case, }) } } pub fn run(config: Config) -> Result<(), Box<dyn Error>> { let contents = fs::read_to_string(config.file_path)?; let results = if config.ignore_case { search_case_insensitive(&config.query, &contents) } else { search(&config.query, &contents) }; for line in results { println!("{line}"); } Ok(()) } pub fn search<'a>(query: &str, contents: &'a str) -> Vec<&'a str> { contents .lines() .filter(|line| line.contains(query)) .collect() } pub fn search_case_insensitive<'a>( query: &str, contents: &'a str, ) -> Vec<&'a str> { let query = query.to_lowercase(); let mut results = Vec::new(); for line in contents.lines() { if line.to_lowercase().contains(&query) { results.push(line); } } results } #[cfg(test)] mod tests { use super::*; #[test] fn case_sensitive() { let query = "duct"; let contents = "\ Rust: safe, fast, productive. Pick three. Duct tape."; assert_eq!(vec!["safe, fast, productive."], search(query, contents)); } #[test] fn case_insensitive() { let query = "rUsT"; let contents = "\ Rust: safe, fast, productive. Pick three. Trust me."; assert_eq!( vec!["Rust:", "Trust me."], search_case_insensitive(query, contents) ); } }

示例 13-22:在 search 函数实现中使用迭代器适配器

回忆 search 函数的目的是返回所有 contents 中包含 query 的行。类似于示例 13-16 中的 filter 例子,可以使用 filter 适配器只保留 line.contains(query) 返回 true 的那些行。接着使用 collect 将匹配行收集到另一个 vector 中。这样就容易多了!尝试对 search_case_insensitive 函数做出同样的使用迭代器方法的修改吧。

选择循环或迭代器

接下来的逻辑问题就是在代码中应该选择哪种风格:是使用示例 13-21 中的原始实现还是使用示例 13-22 中使用迭代器的版本?大部分 Rust 程序员倾向于使用迭代器风格。开始这有点难以理解,不过一旦你对不同迭代器的工作方式有了感觉之后,迭代器可能会更容易理解。相比摆弄不同的循环并创建新 vector,(迭代器)代码则更关注循环的目的。这抽象掉那些老生常谈的代码,这样就更容易看清代码所特有的概念,比如迭代器中每个元素必须面对的过滤条件。

不过这两种实现真的完全等同吗?直觉上的假设是更底层的循环会更快一些。让我们聊聊性能吧。