1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289
//! Global initialization and retrieval of command line arguments.
//!
//! On some platforms these are stored during runtime startup,
//! and on some they are retrieved from the system on demand.
#![allow(dead_code)] // runtime init functions not used during testing
use crate::ffi::OsString;
use crate::fmt;
use crate::vec;
/// One-time global initialization.
pub unsafe fn init(argc: isize, argv: *const *const u8) {
imp::init(argc, argv)
}
/// Returns the command line arguments
pub fn args() -> Args {
imp::args()
}
pub struct Args {
iter: vec::IntoIter<OsString>,
}
impl !Send for Args {}
impl !Sync for Args {}
impl fmt::Debug for Args {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
self.iter.as_slice().fmt(f)
}
}
impl Iterator for Args {
type Item = OsString;
fn next(&mut self) -> Option<OsString> {
self.iter.next()
}
fn size_hint(&self) -> (usize, Option<usize>) {
self.iter.size_hint()
}
}
impl ExactSizeIterator for Args {
fn len(&self) -> usize {
self.iter.len()
}
}
impl DoubleEndedIterator for Args {
fn next_back(&mut self) -> Option<OsString> {
self.iter.next_back()
}
}
#[cfg(any(
target_os = "linux",
target_os = "android",
target_os = "freebsd",
target_os = "dragonfly",
target_os = "netbsd",
target_os = "openbsd",
target_os = "solaris",
target_os = "illumos",
target_os = "emscripten",
target_os = "haiku",
target_os = "l4re",
target_os = "fuchsia",
target_os = "redox",
target_os = "vxworks",
target_os = "horizon",
target_os = "aix",
target_os = "nto",
target_os = "hurd",
))]
mod imp {
use super::Args;
use crate::ffi::{CStr, OsString};
use crate::os::unix::prelude::*;
use crate::ptr;
use crate::sync::atomic::{AtomicIsize, AtomicPtr, Ordering};
// The system-provided argc and argv, which we store in static memory
// here so that we can defer the work of parsing them until its actually
// needed.
//
// Note that we never mutate argv/argc, the argv array, or the argv
// strings, which allows the code in this file to be very simple.
static ARGC: AtomicIsize = AtomicIsize::new(0);
static ARGV: AtomicPtr<*const u8> = AtomicPtr::new(ptr::null_mut());
unsafe fn really_init(argc: isize, argv: *const *const u8) {
// These don't need to be ordered with each other or other stores,
// because they only hold the unmodified system-provide argv/argc.
ARGC.store(argc, Ordering::Relaxed);
ARGV.store(argv as *mut _, Ordering::Relaxed);
}
#[inline(always)]
pub unsafe fn init(_argc: isize, _argv: *const *const u8) {
// On Linux-GNU, we rely on `ARGV_INIT_ARRAY` below to initialize
// `ARGC` and `ARGV`. But in Miri that does not actually happen so we
// still initialize here.
#[cfg(any(miri, not(all(target_os = "linux", target_env = "gnu"))))]
really_init(_argc, _argv);
}
/// glibc passes argc, argv, and envp to functions in .init_array, as a non-standard extension.
/// This allows `std::env::args` to work even in a `cdylib`, as it does on macOS and Windows.
#[cfg(all(target_os = "linux", target_env = "gnu"))]
#[used]
#[link_section = ".init_array.00099"]
static ARGV_INIT_ARRAY: extern "C" fn(
crate::os::raw::c_int,
*const *const u8,
*const *const u8,
) = {
extern "C" fn init_wrapper(
argc: crate::os::raw::c_int,
argv: *const *const u8,
_envp: *const *const u8,
) {
unsafe {
really_init(argc as isize, argv);
}
}
init_wrapper
};
pub fn args() -> Args {
Args { iter: clone().into_iter() }
}
fn clone() -> Vec<OsString> {
unsafe {
// Load ARGC and ARGV, which hold the unmodified system-provided
// argc/argv, so we can read the pointed-to memory without atomics
// or synchronization.
//
// If either ARGC or ARGV is still zero or null, then either there
// really are no arguments, or someone is asking for `args()`
// before initialization has completed, and we return an empty
// list.
let argv = ARGV.load(Ordering::Relaxed);
let argc = if argv.is_null() { 0 } else { ARGC.load(Ordering::Relaxed) };
let mut args = Vec::with_capacity(argc as usize);
for i in 0..argc {
let ptr = *argv.offset(i) as *const libc::c_char;
// Some C commandline parsers (e.g. GLib and Qt) are replacing already
// handled arguments in `argv` with `NULL` and move them to the end. That
// means that `argc` might be bigger than the actual number of non-`NULL`
// pointers in `argv` at this point.
//
// To handle this we simply stop iterating at the first `NULL` argument.
//
// `argv` is also guaranteed to be `NULL`-terminated so any non-`NULL` arguments
// after the first `NULL` can safely be ignored.
if ptr.is_null() {
break;
}
let cstr = CStr::from_ptr(ptr);
args.push(OsStringExt::from_vec(cstr.to_bytes().to_vec()));
}
args
}
}
}
#[cfg(any(target_os = "macos", target_os = "ios", target_os = "tvos", target_os = "watchos"))]
mod imp {
use super::Args;
use crate::ffi::CStr;
pub unsafe fn init(_argc: isize, _argv: *const *const u8) {}
#[cfg(target_os = "macos")]
pub fn args() -> Args {
use crate::os::unix::prelude::*;
extern "C" {
// These functions are in crt_externs.h.
fn _NSGetArgc() -> *mut libc::c_int;
fn _NSGetArgv() -> *mut *mut *mut libc::c_char;
}
let vec = unsafe {
let (argc, argv) =
(*_NSGetArgc() as isize, *_NSGetArgv() as *const *const libc::c_char);
(0..argc as isize)
.map(|i| {
let bytes = CStr::from_ptr(*argv.offset(i)).to_bytes().to_vec();
OsStringExt::from_vec(bytes)
})
.collect::<Vec<_>>()
};
Args { iter: vec.into_iter() }
}
// As _NSGetArgc and _NSGetArgv aren't mentioned in iOS docs
// and use underscores in their names - they're most probably
// are considered private and therefore should be avoided.
// Here is another way to get arguments using the Objective-C
// runtime.
//
// In general it looks like:
// res = Vec::new()
// let args = [[NSProcessInfo processInfo] arguments]
// for i in (0..[args count])
// res.push([args objectAtIndex:i])
// res
#[cfg(any(target_os = "ios", target_os = "tvos", target_os = "watchos"))]
pub fn args() -> Args {
use crate::ffi::{c_char, c_void, OsString};
use crate::mem;
use crate::str;
type Sel = *const c_void;
type NsId = *const c_void;
type NSUInteger = usize;
extern "C" {
fn sel_registerName(name: *const c_char) -> Sel;
fn objc_getClass(class_name: *const c_char) -> NsId;
// This must be transmuted to an appropriate function pointer type before being called.
fn objc_msgSend();
}
const MSG_SEND_PTR: unsafe extern "C" fn() = objc_msgSend;
const MSG_SEND_NO_ARGUMENTS_RETURN_PTR: unsafe extern "C" fn(NsId, Sel) -> *const c_void =
unsafe { mem::transmute(MSG_SEND_PTR) };
const MSG_SEND_NO_ARGUMENTS_RETURN_NSUINTEGER: unsafe extern "C" fn(
NsId,
Sel,
) -> NSUInteger = unsafe { mem::transmute(MSG_SEND_PTR) };
const MSG_SEND_NSINTEGER_ARGUMENT_RETURN_PTR: unsafe extern "C" fn(
NsId,
Sel,
NSUInteger,
)
-> *const c_void = unsafe { mem::transmute(MSG_SEND_PTR) };
let mut res = Vec::new();
unsafe {
let process_info_sel = sel_registerName(c"processInfo".as_ptr());
let arguments_sel = sel_registerName(c"arguments".as_ptr());
let count_sel = sel_registerName(c"count".as_ptr());
let object_at_index_sel = sel_registerName(c"objectAtIndex:".as_ptr());
let utf8string_sel = sel_registerName(c"UTF8String".as_ptr());
let klass = objc_getClass(c"NSProcessInfo".as_ptr());
// `+[NSProcessInfo processInfo]` returns an object with +0 retain count, so no need to manually `retain/release`.
let info = MSG_SEND_NO_ARGUMENTS_RETURN_PTR(klass, process_info_sel);
// `-[NSProcessInfo arguments]` returns an object with +0 retain count, so no need to manually `retain/release`.
let args = MSG_SEND_NO_ARGUMENTS_RETURN_PTR(info, arguments_sel);
let cnt = MSG_SEND_NO_ARGUMENTS_RETURN_NSUINTEGER(args, count_sel);
for i in 0..cnt {
// `-[NSArray objectAtIndex:]` returns an object whose lifetime is tied to the array, so no need to manually `retain/release`.
let ns_string =
MSG_SEND_NSINTEGER_ARGUMENT_RETURN_PTR(args, object_at_index_sel, i);
// The lifetime of this pointer is tied to the NSString, as well as the current autorelease pool, which is why we heap-allocate the string below.
let utf_c_str: *const c_char =
MSG_SEND_NO_ARGUMENTS_RETURN_PTR(ns_string, utf8string_sel).cast();
let bytes = CStr::from_ptr(utf_c_str).to_bytes();
res.push(OsString::from(str::from_utf8(bytes).unwrap()))
}
}
Args { iter: res.into_iter() }
}
}
#[cfg(any(target_os = "espidf", target_os = "vita"))]
mod imp {
use super::Args;
#[inline(always)]
pub unsafe fn init(_argc: isize, _argv: *const *const u8) {}
pub fn args() -> Args {
Args { iter: Vec::new().into_iter() }
}
}