1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
//! Global initialization and retrieval of command line arguments.
//!
//! On some platforms these are stored during runtime startup,
//! and on some they are retrieved from the system on demand.

#![allow(dead_code)] // runtime init functions not used during testing

use crate::ffi::OsString;
use crate::fmt;
use crate::vec;

/// One-time global initialization.
pub unsafe fn init(argc: isize, argv: *const *const u8) {
    imp::init(argc, argv)
}

/// Returns the command line arguments
pub fn args() -> Args {
    imp::args()
}

pub struct Args {
    iter: vec::IntoIter<OsString>,
}

impl !Send for Args {}
impl !Sync for Args {}

impl fmt::Debug for Args {
    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
        self.iter.as_slice().fmt(f)
    }
}

impl Iterator for Args {
    type Item = OsString;
    fn next(&mut self) -> Option<OsString> {
        self.iter.next()
    }
    fn size_hint(&self) -> (usize, Option<usize>) {
        self.iter.size_hint()
    }
}

impl ExactSizeIterator for Args {
    fn len(&self) -> usize {
        self.iter.len()
    }
}

impl DoubleEndedIterator for Args {
    fn next_back(&mut self) -> Option<OsString> {
        self.iter.next_back()
    }
}

#[cfg(any(
    target_os = "linux",
    target_os = "android",
    target_os = "freebsd",
    target_os = "dragonfly",
    target_os = "netbsd",
    target_os = "openbsd",
    target_os = "solaris",
    target_os = "illumos",
    target_os = "emscripten",
    target_os = "haiku",
    target_os = "l4re",
    target_os = "fuchsia",
    target_os = "redox",
    target_os = "vxworks",
    target_os = "horizon",
    target_os = "aix",
    target_os = "nto",
    target_os = "hurd",
))]
mod imp {
    use super::Args;
    use crate::ffi::{CStr, OsString};
    use crate::os::unix::prelude::*;
    use crate::ptr;
    use crate::sync::atomic::{AtomicIsize, AtomicPtr, Ordering};

    // The system-provided argc and argv, which we store in static memory
    // here so that we can defer the work of parsing them until its actually
    // needed.
    //
    // Note that we never mutate argv/argc, the argv array, or the argv
    // strings, which allows the code in this file to be very simple.
    static ARGC: AtomicIsize = AtomicIsize::new(0);
    static ARGV: AtomicPtr<*const u8> = AtomicPtr::new(ptr::null_mut());

    unsafe fn really_init(argc: isize, argv: *const *const u8) {
        // These don't need to be ordered with each other or other stores,
        // because they only hold the unmodified system-provide argv/argc.
        ARGC.store(argc, Ordering::Relaxed);
        ARGV.store(argv as *mut _, Ordering::Relaxed);
    }

    #[inline(always)]
    pub unsafe fn init(_argc: isize, _argv: *const *const u8) {
        // On Linux-GNU, we rely on `ARGV_INIT_ARRAY` below to initialize
        // `ARGC` and `ARGV`. But in Miri that does not actually happen so we
        // still initialize here.
        #[cfg(any(miri, not(all(target_os = "linux", target_env = "gnu"))))]
        really_init(_argc, _argv);
    }

    /// glibc passes argc, argv, and envp to functions in .init_array, as a non-standard extension.
    /// This allows `std::env::args` to work even in a `cdylib`, as it does on macOS and Windows.
    #[cfg(all(target_os = "linux", target_env = "gnu"))]
    #[used]
    #[link_section = ".init_array.00099"]
    static ARGV_INIT_ARRAY: extern "C" fn(
        crate::os::raw::c_int,
        *const *const u8,
        *const *const u8,
    ) = {
        extern "C" fn init_wrapper(
            argc: crate::os::raw::c_int,
            argv: *const *const u8,
            _envp: *const *const u8,
        ) {
            unsafe {
                really_init(argc as isize, argv);
            }
        }
        init_wrapper
    };

    pub fn args() -> Args {
        Args { iter: clone().into_iter() }
    }

    fn clone() -> Vec<OsString> {
        unsafe {
            // Load ARGC and ARGV, which hold the unmodified system-provided
            // argc/argv, so we can read the pointed-to memory without atomics
            // or synchronization.
            //
            // If either ARGC or ARGV is still zero or null, then either there
            // really are no arguments, or someone is asking for `args()`
            // before initialization has completed, and we return an empty
            // list.
            let argv = ARGV.load(Ordering::Relaxed);
            let argc = if argv.is_null() { 0 } else { ARGC.load(Ordering::Relaxed) };
            let mut args = Vec::with_capacity(argc as usize);
            for i in 0..argc {
                let ptr = *argv.offset(i) as *const libc::c_char;

                // Some C commandline parsers (e.g. GLib and Qt) are replacing already
                // handled arguments in `argv` with `NULL` and move them to the end. That
                // means that `argc` might be bigger than the actual number of non-`NULL`
                // pointers in `argv` at this point.
                //
                // To handle this we simply stop iterating at the first `NULL` argument.
                //
                // `argv` is also guaranteed to be `NULL`-terminated so any non-`NULL` arguments
                // after the first `NULL` can safely be ignored.
                if ptr.is_null() {
                    break;
                }

                let cstr = CStr::from_ptr(ptr);
                args.push(OsStringExt::from_vec(cstr.to_bytes().to_vec()));
            }

            args
        }
    }
}

#[cfg(any(target_os = "macos", target_os = "ios", target_os = "tvos", target_os = "watchos"))]
mod imp {
    use super::Args;
    use crate::ffi::CStr;

    pub unsafe fn init(_argc: isize, _argv: *const *const u8) {}

    #[cfg(target_os = "macos")]
    pub fn args() -> Args {
        use crate::os::unix::prelude::*;
        extern "C" {
            // These functions are in crt_externs.h.
            fn _NSGetArgc() -> *mut libc::c_int;
            fn _NSGetArgv() -> *mut *mut *mut libc::c_char;
        }

        let vec = unsafe {
            let (argc, argv) =
                (*_NSGetArgc() as isize, *_NSGetArgv() as *const *const libc::c_char);
            (0..argc as isize)
                .map(|i| {
                    let bytes = CStr::from_ptr(*argv.offset(i)).to_bytes().to_vec();
                    OsStringExt::from_vec(bytes)
                })
                .collect::<Vec<_>>()
        };
        Args { iter: vec.into_iter() }
    }

    // As _NSGetArgc and _NSGetArgv aren't mentioned in iOS docs
    // and use underscores in their names - they're most probably
    // are considered private and therefore should be avoided.
    // Here is another way to get arguments using the Objective-C
    // runtime.
    //
    // In general it looks like:
    // res = Vec::new()
    // let args = [[NSProcessInfo processInfo] arguments]
    // for i in (0..[args count])
    //      res.push([args objectAtIndex:i])
    // res
    #[cfg(any(target_os = "ios", target_os = "tvos", target_os = "watchos"))]
    pub fn args() -> Args {
        use crate::ffi::{c_char, c_void, OsString};
        use crate::mem;
        use crate::str;

        type Sel = *const c_void;
        type NsId = *const c_void;
        type NSUInteger = usize;

        extern "C" {
            fn sel_registerName(name: *const c_char) -> Sel;
            fn objc_getClass(class_name: *const c_char) -> NsId;

            // This must be transmuted to an appropriate function pointer type before being called.
            fn objc_msgSend();
        }

        const MSG_SEND_PTR: unsafe extern "C" fn() = objc_msgSend;
        const MSG_SEND_NO_ARGUMENTS_RETURN_PTR: unsafe extern "C" fn(NsId, Sel) -> *const c_void =
            unsafe { mem::transmute(MSG_SEND_PTR) };
        const MSG_SEND_NO_ARGUMENTS_RETURN_NSUINTEGER: unsafe extern "C" fn(
            NsId,
            Sel,
        ) -> NSUInteger = unsafe { mem::transmute(MSG_SEND_PTR) };
        const MSG_SEND_NSINTEGER_ARGUMENT_RETURN_PTR: unsafe extern "C" fn(
            NsId,
            Sel,
            NSUInteger,
        )
            -> *const c_void = unsafe { mem::transmute(MSG_SEND_PTR) };

        let mut res = Vec::new();

        unsafe {
            let process_info_sel = sel_registerName(c"processInfo".as_ptr());
            let arguments_sel = sel_registerName(c"arguments".as_ptr());
            let count_sel = sel_registerName(c"count".as_ptr());
            let object_at_index_sel = sel_registerName(c"objectAtIndex:".as_ptr());
            let utf8string_sel = sel_registerName(c"UTF8String".as_ptr());

            let klass = objc_getClass(c"NSProcessInfo".as_ptr());
            // `+[NSProcessInfo processInfo]` returns an object with +0 retain count, so no need to manually `retain/release`.
            let info = MSG_SEND_NO_ARGUMENTS_RETURN_PTR(klass, process_info_sel);

            // `-[NSProcessInfo arguments]` returns an object with +0 retain count, so no need to manually `retain/release`.
            let args = MSG_SEND_NO_ARGUMENTS_RETURN_PTR(info, arguments_sel);

            let cnt = MSG_SEND_NO_ARGUMENTS_RETURN_NSUINTEGER(args, count_sel);
            for i in 0..cnt {
                // `-[NSArray objectAtIndex:]` returns an object whose lifetime is tied to the array, so no need to manually `retain/release`.
                let ns_string =
                    MSG_SEND_NSINTEGER_ARGUMENT_RETURN_PTR(args, object_at_index_sel, i);
                // The lifetime of this pointer is tied to the NSString, as well as the current autorelease pool, which is why we heap-allocate the string below.
                let utf_c_str: *const c_char =
                    MSG_SEND_NO_ARGUMENTS_RETURN_PTR(ns_string, utf8string_sel).cast();
                let bytes = CStr::from_ptr(utf_c_str).to_bytes();
                res.push(OsString::from(str::from_utf8(bytes).unwrap()))
            }
        }

        Args { iter: res.into_iter() }
    }
}

#[cfg(any(target_os = "espidf", target_os = "vita"))]
mod imp {
    use super::Args;

    #[inline(always)]
    pub unsafe fn init(_argc: isize, _argv: *const *const u8) {}

    pub fn args() -> Args {
        Args { iter: Vec::new().into_iter() }
    }
}