1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270
use crate::fmt;
use crate::fmt::Formatter;
use crate::fmt::Write;
use crate::iter::FusedIterator;
use super::from_utf8_unchecked;
use super::validations::utf8_char_width;
/// An item returned by the [`Utf8Chunks`] iterator.
///
/// A `Utf8Chunk` stores a sequence of [`u8`] up to the first broken character
/// when decoding a UTF-8 string.
///
/// # Examples
///
/// ```
/// #![feature(utf8_chunks)]
///
/// use std::str::Utf8Chunks;
///
/// // An invalid UTF-8 string
/// let bytes = b"foo\xF1\x80bar";
///
/// // Decode the first `Utf8Chunk`
/// let chunk = Utf8Chunks::new(bytes).next().unwrap();
///
/// // The first three characters are valid UTF-8
/// assert_eq!("foo", chunk.valid());
///
/// // The fourth character is broken
/// assert_eq!(b"\xF1\x80", chunk.invalid());
/// ```
#[unstable(feature = "utf8_chunks", issue = "99543")]
#[derive(Clone, Debug, PartialEq, Eq)]
pub struct Utf8Chunk<'a> {
valid: &'a str,
invalid: &'a [u8],
}
impl<'a> Utf8Chunk<'a> {
/// Returns the next validated UTF-8 substring.
///
/// This substring can be empty at the start of the string or between
/// broken UTF-8 characters.
#[must_use]
#[unstable(feature = "utf8_chunks", issue = "99543")]
pub fn valid(&self) -> &'a str {
self.valid
}
/// Returns the invalid sequence that caused a failure.
///
/// The returned slice will have a maximum length of 3 and starts after the
/// substring given by [`valid`]. Decoding will resume after this sequence.
///
/// If empty, this is the last chunk in the string. If non-empty, an
/// unexpected byte was encountered or the end of the input was reached
/// unexpectedly.
///
/// Lossy decoding would replace this sequence with [`U+FFFD REPLACEMENT
/// CHARACTER`].
///
/// [`valid`]: Self::valid
/// [`U+FFFD REPLACEMENT CHARACTER`]: crate::char::REPLACEMENT_CHARACTER
#[must_use]
#[unstable(feature = "utf8_chunks", issue = "99543")]
pub fn invalid(&self) -> &'a [u8] {
self.invalid
}
}
#[must_use]
#[unstable(feature = "str_internals", issue = "none")]
pub struct Debug<'a>(&'a [u8]);
#[unstable(feature = "str_internals", issue = "none")]
impl fmt::Debug for Debug<'_> {
fn fmt(&self, f: &mut Formatter<'_>) -> fmt::Result {
f.write_char('"')?;
for chunk in Utf8Chunks::new(self.0) {
// Valid part.
// Here we partially parse UTF-8 again which is suboptimal.
{
let valid = chunk.valid();
let mut from = 0;
for (i, c) in valid.char_indices() {
let esc = c.escape_debug();
// If char needs escaping, flush backlog so far and write, else skip
if esc.len() != 1 {
f.write_str(&valid[from..i])?;
for c in esc {
f.write_char(c)?;
}
from = i + c.len_utf8();
}
}
f.write_str(&valid[from..])?;
}
// Broken parts of string as hex escape.
for &b in chunk.invalid() {
write!(f, "\\x{:02X}", b)?;
}
}
f.write_char('"')
}
}
/// An iterator used to decode a slice of mostly UTF-8 bytes to string slices
/// ([`&str`]) and byte slices ([`&[u8]`][byteslice]).
///
/// If you want a simple conversion from UTF-8 byte slices to string slices,
/// [`from_utf8`] is easier to use.
///
/// [byteslice]: slice
/// [`from_utf8`]: super::from_utf8
///
/// # Examples
///
/// This can be used to create functionality similar to
/// [`String::from_utf8_lossy`] without allocating heap memory:
///
/// ```
/// #![feature(utf8_chunks)]
///
/// use std::str::Utf8Chunks;
///
/// fn from_utf8_lossy<F>(input: &[u8], mut push: F) where F: FnMut(&str) {
/// for chunk in Utf8Chunks::new(input) {
/// push(chunk.valid());
///
/// if !chunk.invalid().is_empty() {
/// push("\u{FFFD}");
/// }
/// }
/// }
/// ```
///
/// [`String::from_utf8_lossy`]: ../../std/string/struct.String.html#method.from_utf8_lossy
#[must_use = "iterators are lazy and do nothing unless consumed"]
#[unstable(feature = "utf8_chunks", issue = "99543")]
#[derive(Clone)]
pub struct Utf8Chunks<'a> {
source: &'a [u8],
}
impl<'a> Utf8Chunks<'a> {
/// Creates a new iterator to decode the bytes.
#[unstable(feature = "utf8_chunks", issue = "99543")]
pub fn new(bytes: &'a [u8]) -> Self {
Self { source: bytes }
}
#[doc(hidden)]
#[unstable(feature = "str_internals", issue = "none")]
pub fn debug(&self) -> Debug<'_> {
Debug(self.source)
}
}
#[unstable(feature = "utf8_chunks", issue = "99543")]
impl<'a> Iterator for Utf8Chunks<'a> {
type Item = Utf8Chunk<'a>;
fn next(&mut self) -> Option<Utf8Chunk<'a>> {
if self.source.is_empty() {
return None;
}
const TAG_CONT_U8: u8 = 128;
fn safe_get(xs: &[u8], i: usize) -> u8 {
*xs.get(i).unwrap_or(&0)
}
let mut i = 0;
let mut valid_up_to = 0;
while i < self.source.len() {
// SAFETY: `i < self.source.len()` per previous line.
// For some reason the following are both significantly slower:
// while let Some(&byte) = self.source.get(i) {
// while let Some(byte) = self.source.get(i).copied() {
let byte = unsafe { *self.source.get_unchecked(i) };
i += 1;
if byte < 128 {
// This could be a `1 => ...` case in the match below, but for
// the common case of all-ASCII inputs, we bypass loading the
// sizeable UTF8_CHAR_WIDTH table into cache.
} else {
let w = utf8_char_width(byte);
match w {
2 => {
if safe_get(self.source, i) & 192 != TAG_CONT_U8 {
break;
}
i += 1;
}
3 => {
match (byte, safe_get(self.source, i)) {
(0xE0, 0xA0..=0xBF) => (),
(0xE1..=0xEC, 0x80..=0xBF) => (),
(0xED, 0x80..=0x9F) => (),
(0xEE..=0xEF, 0x80..=0xBF) => (),
_ => break,
}
i += 1;
if safe_get(self.source, i) & 192 != TAG_CONT_U8 {
break;
}
i += 1;
}
4 => {
match (byte, safe_get(self.source, i)) {
(0xF0, 0x90..=0xBF) => (),
(0xF1..=0xF3, 0x80..=0xBF) => (),
(0xF4, 0x80..=0x8F) => (),
_ => break,
}
i += 1;
if safe_get(self.source, i) & 192 != TAG_CONT_U8 {
break;
}
i += 1;
if safe_get(self.source, i) & 192 != TAG_CONT_U8 {
break;
}
i += 1;
}
_ => break,
}
}
valid_up_to = i;
}
// SAFETY: `i <= self.source.len()` because it is only ever incremented
// via `i += 1` and in between every single one of those increments, `i`
// is compared against `self.source.len()`. That happens either
// literally by `i < self.source.len()` in the while-loop's condition,
// or indirectly by `safe_get(self.source, i) & 192 != TAG_CONT_U8`. The
// loop is terminated as soon as the latest `i += 1` has made `i` no
// longer less than `self.source.len()`, which means it'll be at most
// equal to `self.source.len()`.
let (inspected, remaining) = unsafe { self.source.split_at_unchecked(i) };
self.source = remaining;
// SAFETY: `valid_up_to <= i` because it is only ever assigned via
// `valid_up_to = i` and `i` only increases.
let (valid, invalid) = unsafe { inspected.split_at_unchecked(valid_up_to) };
Some(Utf8Chunk {
// SAFETY: All bytes up to `valid_up_to` are valid UTF-8.
valid: unsafe { from_utf8_unchecked(valid) },
invalid,
})
}
}
#[unstable(feature = "utf8_chunks", issue = "99543")]
impl FusedIterator for Utf8Chunks<'_> {}
#[unstable(feature = "utf8_chunks", issue = "99543")]
impl fmt::Debug for Utf8Chunks<'_> {
fn fmt(&self, f: &mut Formatter<'_>) -> fmt::Result {
f.debug_struct("Utf8Chunks").field("source", &self.debug()).finish()
}
}