1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258
use crate::{convert, ops};
/// Used to tell an operation whether it should exit early or go on as usual.
///
/// This is used when exposing things (like graph traversals or visitors) where
/// you want the user to be able to choose whether to exit early.
/// Having the enum makes it clearer -- no more wondering "wait, what did `false`
/// mean again?" -- and allows including a value.
///
/// Similar to [`Option`] and [`Result`], this enum can be used with the `?` operator
/// to return immediately if the [`Break`] variant is present or otherwise continue normally
/// with the value inside the [`Continue`] variant.
///
/// # Examples
///
/// Early-exiting from [`Iterator::try_for_each`]:
/// ```
/// use std::ops::ControlFlow;
///
/// let r = (2..100).try_for_each(|x| {
/// if 403 % x == 0 {
/// return ControlFlow::Break(x)
/// }
///
/// ControlFlow::Continue(())
/// });
/// assert_eq!(r, ControlFlow::Break(13));
/// ```
///
/// A basic tree traversal:
/// ```
/// use std::ops::ControlFlow;
///
/// pub struct TreeNode<T> {
/// value: T,
/// left: Option<Box<TreeNode<T>>>,
/// right: Option<Box<TreeNode<T>>>,
/// }
///
/// impl<T> TreeNode<T> {
/// pub fn traverse_inorder<B>(&self, f: &mut impl FnMut(&T) -> ControlFlow<B>) -> ControlFlow<B> {
/// if let Some(left) = &self.left {
/// left.traverse_inorder(f)?;
/// }
/// f(&self.value)?;
/// if let Some(right) = &self.right {
/// right.traverse_inorder(f)?;
/// }
/// ControlFlow::Continue(())
/// }
/// fn leaf(value: T) -> Option<Box<TreeNode<T>>> {
/// Some(Box::new(Self { value, left: None, right: None }))
/// }
/// }
///
/// let node = TreeNode {
/// value: 0,
/// left: TreeNode::leaf(1),
/// right: Some(Box::new(TreeNode {
/// value: -1,
/// left: TreeNode::leaf(5),
/// right: TreeNode::leaf(2),
/// }))
/// };
/// let mut sum = 0;
///
/// let res = node.traverse_inorder(&mut |val| {
/// if *val < 0 {
/// ControlFlow::Break(*val)
/// } else {
/// sum += *val;
/// ControlFlow::Continue(())
/// }
/// });
/// assert_eq!(res, ControlFlow::Break(-1));
/// assert_eq!(sum, 6);
/// ```
///
/// [`Break`]: ControlFlow::Break
/// [`Continue`]: ControlFlow::Continue
#[stable(feature = "control_flow_enum_type", since = "1.55.0")]
// ControlFlow should not implement PartialOrd or Ord, per RFC 3058:
// https://rust-lang.github.io/rfcs/3058-try-trait-v2.html#traits-for-controlflow
#[derive(Debug, Clone, Copy, PartialEq, Eq, Hash)]
pub enum ControlFlow<B, C = ()> {
/// Move on to the next phase of the operation as normal.
#[stable(feature = "control_flow_enum_type", since = "1.55.0")]
#[lang = "Continue"]
Continue(C),
/// Exit the operation without running subsequent phases.
#[stable(feature = "control_flow_enum_type", since = "1.55.0")]
#[lang = "Break"]
Break(B),
// Yes, the order of the variants doesn't match the type parameters.
// They're in this order so that `ControlFlow<A, B>` <-> `Result<B, A>`
// is a no-op conversion in the `Try` implementation.
}
#[unstable(feature = "try_trait_v2", issue = "84277")]
impl<B, C> ops::Try for ControlFlow<B, C> {
type Output = C;
type Residual = ControlFlow<B, convert::Infallible>;
#[inline]
fn from_output(output: Self::Output) -> Self {
ControlFlow::Continue(output)
}
#[inline]
fn branch(self) -> ControlFlow<Self::Residual, Self::Output> {
match self {
ControlFlow::Continue(c) => ControlFlow::Continue(c),
ControlFlow::Break(b) => ControlFlow::Break(ControlFlow::Break(b)),
}
}
}
#[unstable(feature = "try_trait_v2", issue = "84277")]
impl<B, C> ops::FromResidual for ControlFlow<B, C> {
#[inline]
fn from_residual(residual: ControlFlow<B, convert::Infallible>) -> Self {
match residual {
ControlFlow::Break(b) => ControlFlow::Break(b),
}
}
}
#[unstable(feature = "try_trait_v2_residual", issue = "91285")]
impl<B, C> ops::Residual<C> for ControlFlow<B, convert::Infallible> {
type TryType = ControlFlow<B, C>;
}
impl<B, C> ControlFlow<B, C> {
/// Returns `true` if this is a `Break` variant.
///
/// # Examples
///
/// ```
/// use std::ops::ControlFlow;
///
/// assert!(ControlFlow::<i32, String>::Break(3).is_break());
/// assert!(!ControlFlow::<String, i32>::Continue(3).is_break());
/// ```
#[inline]
#[stable(feature = "control_flow_enum_is", since = "1.59.0")]
pub fn is_break(&self) -> bool {
matches!(*self, ControlFlow::Break(_))
}
/// Returns `true` if this is a `Continue` variant.
///
/// # Examples
///
/// ```
/// use std::ops::ControlFlow;
///
/// assert!(!ControlFlow::<i32, String>::Break(3).is_continue());
/// assert!(ControlFlow::<String, i32>::Continue(3).is_continue());
/// ```
#[inline]
#[stable(feature = "control_flow_enum_is", since = "1.59.0")]
pub fn is_continue(&self) -> bool {
matches!(*self, ControlFlow::Continue(_))
}
/// Converts the `ControlFlow` into an `Option` which is `Some` if the
/// `ControlFlow` was `Break` and `None` otherwise.
///
/// # Examples
///
/// ```
/// #![feature(control_flow_enum)]
/// use std::ops::ControlFlow;
///
/// assert_eq!(ControlFlow::<i32, String>::Break(3).break_value(), Some(3));
/// assert_eq!(ControlFlow::<String, i32>::Continue(3).break_value(), None);
/// ```
#[inline]
#[unstable(feature = "control_flow_enum", reason = "new API", issue = "75744")]
pub fn break_value(self) -> Option<B> {
match self {
ControlFlow::Continue(..) => None,
ControlFlow::Break(x) => Some(x),
}
}
/// Maps `ControlFlow<B, C>` to `ControlFlow<T, C>` by applying a function
/// to the break value in case it exists.
#[inline]
#[unstable(feature = "control_flow_enum", reason = "new API", issue = "75744")]
pub fn map_break<T, F>(self, f: F) -> ControlFlow<T, C>
where
F: FnOnce(B) -> T,
{
match self {
ControlFlow::Continue(x) => ControlFlow::Continue(x),
ControlFlow::Break(x) => ControlFlow::Break(f(x)),
}
}
/// Converts the `ControlFlow` into an `Option` which is `Some` if the
/// `ControlFlow` was `Continue` and `None` otherwise.
///
/// # Examples
///
/// ```
/// #![feature(control_flow_enum)]
/// use std::ops::ControlFlow;
///
/// assert_eq!(ControlFlow::<i32, String>::Break(3).continue_value(), None);
/// assert_eq!(ControlFlow::<String, i32>::Continue(3).continue_value(), Some(3));
/// ```
#[inline]
#[unstable(feature = "control_flow_enum", reason = "new API", issue = "75744")]
pub fn continue_value(self) -> Option<C> {
match self {
ControlFlow::Continue(x) => Some(x),
ControlFlow::Break(..) => None,
}
}
/// Maps `ControlFlow<B, C>` to `ControlFlow<B, T>` by applying a function
/// to the continue value in case it exists.
#[inline]
#[unstable(feature = "control_flow_enum", reason = "new API", issue = "75744")]
pub fn map_continue<T, F>(self, f: F) -> ControlFlow<B, T>
where
F: FnOnce(C) -> T,
{
match self {
ControlFlow::Continue(x) => ControlFlow::Continue(f(x)),
ControlFlow::Break(x) => ControlFlow::Break(x),
}
}
}
/// These are used only as part of implementing the iterator adapters.
/// They have mediocre names and non-obvious semantics, so aren't
/// currently on a path to potential stabilization.
impl<R: ops::Try> ControlFlow<R, R::Output> {
/// Create a `ControlFlow` from any type implementing `Try`.
#[inline]
pub(crate) fn from_try(r: R) -> Self {
match R::branch(r) {
ControlFlow::Continue(v) => ControlFlow::Continue(v),
ControlFlow::Break(v) => ControlFlow::Break(R::from_residual(v)),
}
}
/// Convert a `ControlFlow` into any type implementing `Try`;
#[inline]
pub(crate) fn into_try(self) -> R {
match self {
ControlFlow::Continue(v) => R::from_output(v),
ControlFlow::Break(v) => v,
}
}
}