1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101
//! Platform-specific, assembly instructions to avoid
//! intermediate rounding on architectures with FPUs.
pub use fpu_precision::set_precision;
// On x86, the x87 FPU is used for float operations if the SSE/SSE2 extensions are not available.
// The x87 FPU operates with 80 bits of precision by default, which means that operations will
// round to 80 bits causing double rounding to happen when values are eventually represented as
// 32/64 bit float values. To overcome this, the FPU control word can be set so that the
// computations are performed in the desired precision.
//
// Note that normally, it is Undefined Behavior to alter the FPU control word while Rust code runs.
// The compiler assumes that the control word is always in its default state. However, in this
// particular case the semantics with the altered control word are actually *more faithful*
// to Rust semantics than the default -- arguably it is all the code that runs *outside* of the scope
// of a `set_precision` guard that is wrong.
// In other words, we are only using this to work around <https://github.com/rust-lang/rust/issues/114479>.
// Sometimes killing UB with UB actually works...
// (If this is used to set 32bit precision, there is still a risk that the compiler moves some 64bit
// operation into the scope of the `set_precision` guard. So it's not like this is totally sound.
// But it's not really any less sound than the default state of 80bit precision...)
#[cfg(all(target_arch = "x86", not(target_feature = "sse2")))]
mod fpu_precision {
use core::arch::asm;
use core::mem::size_of;
/// A structure used to preserve the original value of the FPU control word, so that it can be
/// restored when the structure is dropped.
///
/// The x87 FPU is a 16-bits register whose fields are as follows:
///
/// | 12-15 | 10-11 | 8-9 | 6-7 | 5 | 4 | 3 | 2 | 1 | 0 |
/// |------:|------:|----:|----:|---:|---:|---:|---:|---:|---:|
/// | | RC | PC | | PM | UM | OM | ZM | DM | IM |
///
/// The documentation for all of the fields is available in the IA-32 Architectures Software
/// Developer's Manual (Volume 1).
///
/// The only field which is relevant for the following code is PC, Precision Control. This
/// field determines the precision of the operations performed by the FPU. It can be set to:
/// - 0b00, single precision i.e., 32-bits
/// - 0b10, double precision i.e., 64-bits
/// - 0b11, double extended precision i.e., 80-bits (default state)
/// The 0b01 value is reserved and should not be used.
pub struct FPUControlWord(u16);
fn set_cw(cw: u16) {
// SAFETY: the `fldcw` instruction has been audited to be able to work correctly with
// any `u16`
unsafe {
asm!(
"fldcw word ptr [{}]",
in(reg) &cw,
options(nostack),
)
}
}
/// Sets the precision field of the FPU to `T` and returns a `FPUControlWord`.
pub fn set_precision<T>() -> FPUControlWord {
let mut cw = 0_u16;
// Compute the value for the Precision Control field that is appropriate for `T`.
let cw_precision = match size_of::<T>() {
4 => 0x0000, // 32 bits
8 => 0x0200, // 64 bits
_ => 0x0300, // default, 80 bits
};
// Get the original value of the control word to restore it later, when the
// `FPUControlWord` structure is dropped
// SAFETY: the `fnstcw` instruction has been audited to be able to work correctly with
// any `u16`
unsafe {
asm!(
"fnstcw word ptr [{}]",
in(reg) &mut cw,
options(nostack),
)
}
// Set the control word to the desired precision. This is achieved by masking away the old
// precision (bits 8 and 9, 0x300) and replacing it with the precision flag computed above.
set_cw((cw & 0xFCFF) | cw_precision);
FPUControlWord(cw)
}
impl Drop for FPUControlWord {
fn drop(&mut self) {
set_cw(self.0)
}
}
}
// In most architectures, floating point operations have an explicit bit size, therefore the
// precision of the computation is determined on a per-operation basis.
#[cfg(any(not(target_arch = "x86"), target_feature = "sse2"))]
mod fpu_precision {
pub fn set_precision<T>() {}
}