1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121
use crate::fmt;
use crate::iter::{FusedIterator, TrustedLen};
/// Creates an iterator that lazily generates a value exactly once by invoking
/// the provided closure.
///
/// This is commonly used to adapt a single value coroutine into a [`chain()`] of
/// other kinds of iteration. Maybe you have an iterator that covers almost
/// everything, but you need an extra special case. Maybe you have a function
/// which works on iterators, but you only need to process one value.
///
/// Unlike [`once()`], this function will lazily generate the value on request.
///
/// [`chain()`]: Iterator::chain
/// [`once()`]: crate::iter::once
///
/// # Examples
///
/// Basic usage:
///
/// ```
/// use std::iter;
///
/// // one is the loneliest number
/// let mut one = iter::once_with(|| 1);
///
/// assert_eq!(Some(1), one.next());
///
/// // just one, that's all we get
/// assert_eq!(None, one.next());
/// ```
///
/// Chaining together with another iterator. Let's say that we want to iterate
/// over each file of the `.foo` directory, but also a configuration file,
/// `.foorc`:
///
/// ```no_run
/// use std::iter;
/// use std::fs;
/// use std::path::PathBuf;
///
/// let dirs = fs::read_dir(".foo").unwrap();
///
/// // we need to convert from an iterator of DirEntry-s to an iterator of
/// // PathBufs, so we use map
/// let dirs = dirs.map(|file| file.unwrap().path());
///
/// // now, our iterator just for our config file
/// let config = iter::once_with(|| PathBuf::from(".foorc"));
///
/// // chain the two iterators together into one big iterator
/// let files = dirs.chain(config);
///
/// // this will give us all of the files in .foo as well as .foorc
/// for f in files {
/// println!("{f:?}");
/// }
/// ```
#[inline]
#[stable(feature = "iter_once_with", since = "1.43.0")]
pub fn once_with<A, F: FnOnce() -> A>(gen: F) -> OnceWith<F> {
OnceWith { gen: Some(gen) }
}
/// An iterator that yields a single element of type `A` by
/// applying the provided closure `F: FnOnce() -> A`.
///
/// This `struct` is created by the [`once_with()`] function.
/// See its documentation for more.
#[derive(Clone)]
#[stable(feature = "iter_once_with", since = "1.43.0")]
pub struct OnceWith<F> {
gen: Option<F>,
}
#[stable(feature = "iter_once_with_debug", since = "1.68.0")]
impl<F> fmt::Debug for OnceWith<F> {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
if self.gen.is_some() {
f.write_str("OnceWith(Some(_))")
} else {
f.write_str("OnceWith(None)")
}
}
}
#[stable(feature = "iter_once_with", since = "1.43.0")]
impl<A, F: FnOnce() -> A> Iterator for OnceWith<F> {
type Item = A;
#[inline]
fn next(&mut self) -> Option<A> {
let f = self.gen.take()?;
Some(f())
}
#[inline]
fn size_hint(&self) -> (usize, Option<usize>) {
self.gen.iter().size_hint()
}
}
#[stable(feature = "iter_once_with", since = "1.43.0")]
impl<A, F: FnOnce() -> A> DoubleEndedIterator for OnceWith<F> {
fn next_back(&mut self) -> Option<A> {
self.next()
}
}
#[stable(feature = "iter_once_with", since = "1.43.0")]
impl<A, F: FnOnce() -> A> ExactSizeIterator for OnceWith<F> {
fn len(&self) -> usize {
self.gen.iter().len()
}
}
#[stable(feature = "iter_once_with", since = "1.43.0")]
impl<A, F: FnOnce() -> A> FusedIterator for OnceWith<F> {}
#[stable(feature = "iter_once_with", since = "1.43.0")]
unsafe impl<A, F: FnOnce() -> A> TrustedLen for OnceWith<F> {}