1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
use crate::{
    fmt,
    iter::FusedIterator,
    mem::{self, MaybeUninit},
    ptr,
};

/// An iterator over the mapped windows of another iterator.
///
/// This `struct` is created by the [`Iterator::map_windows`]. See its
/// documentation for more information.
#[must_use = "iterators are lazy and do nothing unless consumed"]
#[unstable(feature = "iter_map_windows", reason = "recently added", issue = "87155")]
pub struct MapWindows<I: Iterator, F, const N: usize> {
    f: F,
    inner: MapWindowsInner<I, N>,
}

struct MapWindowsInner<I: Iterator, const N: usize> {
    // We fuse the inner iterator because there shouldn't be "holes" in
    // the sliding window. Once the iterator returns a `None`, we make
    // our `MapWindows` iterator return `None` forever.
    iter: Option<I>,
    // Since iterators are assumed lazy, i.e. it only yields an item when
    // `Iterator::next()` is called, and `MapWindows` is not an exception.
    //
    // Before the first iteration, we keep the buffer `None`. When the user
    // first call `next` or other methods that makes the iterator advance,
    // we collect the first `N` items yielded from the inner iterator and
    // put it into the buffer.
    //
    // When the inner iterator has returned a `None` (i.e. fused), we take
    // away this `buffer` and leave it `None` to reclaim its resources.
    //
    // FIXME: should we shrink the size of `buffer` using niche optimization?
    buffer: Option<Buffer<I::Item, N>>,
}

// `Buffer` uses two times of space to reduce moves among the iterations.
// `Buffer<T, N>` is semantically `[MaybeUninit<T>; 2 * N]`. However, due
// to limitations of const generics, we use this different type. Note that
// it has the same underlying memory layout.
struct Buffer<T, const N: usize> {
    // Invariant: `self.buffer[self.start..self.start + N]` is initialized,
    // with all other elements being uninitialized. This also
    // implies that `self.start <= N`.
    buffer: [[MaybeUninit<T>; N]; 2],
    start: usize,
}

impl<I: Iterator, F, const N: usize> MapWindows<I, F, N> {
    pub(in crate::iter) fn new(iter: I, f: F) -> Self {
        assert!(N != 0, "array in `Iterator::map_windows` must contain more than 0 elements");

        // Only ZST arrays' length can be so large.
        if mem::size_of::<I::Item>() == 0 {
            assert!(
                N.checked_mul(2).is_some(),
                "array size of `Iterator::map_windows` is too large"
            );
        }

        Self { inner: MapWindowsInner::new(iter), f }
    }
}

impl<I: Iterator, const N: usize> MapWindowsInner<I, N> {
    #[inline]
    fn new(iter: I) -> Self {
        Self { iter: Some(iter), buffer: None }
    }

    fn next_window(&mut self) -> Option<&[I::Item; N]> {
        let iter = self.iter.as_mut()?;
        match self.buffer {
            // It is the first time to advance. We collect
            // the first `N` items from `self.iter` to initialize `self.buffer`.
            None => self.buffer = Buffer::try_from_iter(iter),
            Some(ref mut buffer) => match iter.next() {
                None => {
                    // Fuse the inner iterator since it yields a `None`.
                    self.iter.take();
                    self.buffer.take();
                }
                // Advance the iterator. We first call `next` before changing our buffer
                // at all. This means that if `next` panics, our invariant is upheld and
                // our `Drop` impl drops the correct elements.
                Some(item) => buffer.push(item),
            },
        }
        self.buffer.as_ref().map(Buffer::as_array_ref)
    }

    fn size_hint(&self) -> (usize, Option<usize>) {
        let Some(ref iter) = self.iter else { return (0, Some(0)) };
        let (lo, hi) = iter.size_hint();
        if self.buffer.is_some() {
            // If the first `N` items are already yielded by the inner iterator,
            // the size hint is then equal to the that of the inner iterator's.
            (lo, hi)
        } else {
            // If the first `N` items are not yet yielded by the inner iterator,
            // the first `N` elements should be counted as one window, so both bounds
            // should subtract `N - 1`.
            (lo.saturating_sub(N - 1), hi.map(|hi| hi.saturating_sub(N - 1)))
        }
    }
}

impl<T, const N: usize> Buffer<T, N> {
    fn try_from_iter(iter: &mut impl Iterator<Item = T>) -> Option<Self> {
        let first_half = crate::array::iter_next_chunk(iter).ok()?;
        let buffer = [MaybeUninit::new(first_half).transpose(), MaybeUninit::uninit_array()];
        Some(Self { buffer, start: 0 })
    }

    #[inline]
    fn buffer_ptr(&self) -> *const MaybeUninit<T> {
        self.buffer.as_ptr().cast()
    }

    #[inline]
    fn buffer_mut_ptr(&mut self) -> *mut MaybeUninit<T> {
        self.buffer.as_mut_ptr().cast()
    }

    #[inline]
    fn as_array_ref(&self) -> &[T; N] {
        debug_assert!(self.start + N <= 2 * N);

        // SAFETY: our invariant guarantees these elements are initialized.
        unsafe { &*self.buffer_ptr().add(self.start).cast() }
    }

    #[inline]
    fn as_uninit_array_mut(&mut self) -> &mut MaybeUninit<[T; N]> {
        debug_assert!(self.start + N <= 2 * N);

        // SAFETY: our invariant guarantees these elements are in bounds.
        unsafe { &mut *self.buffer_mut_ptr().add(self.start).cast() }
    }

    /// Pushes a new item `next` to the back, and pops the front-most one.
    ///
    /// All the elements will be shifted to the front end when pushing reaches
    /// the back end.
    fn push(&mut self, next: T) {
        let buffer_mut_ptr = self.buffer_mut_ptr();
        debug_assert!(self.start + N <= 2 * N);

        let to_drop = if self.start == N {
            // We have reached the end of our buffer and have to copy
            // everything to the start. Example layout for N = 3.
            //
            //    0   1   2   3   4   5            0   1   2   3   4   5
            //  ┌───┬───┬───┬───┬───┬───┐        ┌───┬───┬───┬───┬───┬───┐
            //  │ - │ - │ - │ a │ b │ c │   ->   │ b │ c │ n │ - │ - │ - │
            //  └───┴───┴───┴───┴───┴───┘        └───┴───┴───┴───┴───┴───┘
            //                ↑                    ↑
            //              start                start

            // SAFETY: the two pointers are valid for reads/writes of N -1
            // elements because our array's size is semantically 2 * N. The
            // regions also don't overlap for the same reason.
            //
            // We leave the old elements in place. As soon as `start` is set
            // to 0, we treat them as uninitialized and treat their copies
            // as initialized.
            let to_drop = unsafe {
                ptr::copy_nonoverlapping(buffer_mut_ptr.add(self.start + 1), buffer_mut_ptr, N - 1);
                (*buffer_mut_ptr.add(N - 1)).write(next);
                buffer_mut_ptr.add(self.start)
            };
            self.start = 0;
            to_drop
        } else {
            // SAFETY: `self.start` is < N as guaranteed by the invariant
            // plus the check above. Even if the drop at the end panics,
            // the invariant is upheld.
            //
            // Example layout for N = 3:
            //
            //    0   1   2   3   4   5            0   1   2   3   4   5
            //  ┌───┬───┬───┬───┬───┬───┐        ┌───┬───┬───┬───┬───┬───┐
            //  │ - │ a │ b │ c │ - │ - │   ->   │ - │ - │ b │ c │ n │ - │
            //  └───┴───┴───┴───┴───┴───┘        └───┴───┴───┴───┴───┴───┘
            //        ↑                                    ↑
            //      start                                start
            //
            let to_drop = unsafe {
                (*buffer_mut_ptr.add(self.start + N)).write(next);
                buffer_mut_ptr.add(self.start)
            };
            self.start += 1;
            to_drop
        };

        // SAFETY: the index is valid and this is element `a` in the
        // diagram above and has not been dropped yet.
        unsafe { ptr::drop_in_place(to_drop.cast::<T>()) };
    }
}

impl<T: Clone, const N: usize> Clone for Buffer<T, N> {
    fn clone(&self) -> Self {
        let mut buffer = Buffer {
            buffer: [MaybeUninit::uninit_array(), MaybeUninit::uninit_array()],
            start: self.start,
        };
        buffer.as_uninit_array_mut().write(self.as_array_ref().clone());
        buffer
    }
}

impl<I, const N: usize> Clone for MapWindowsInner<I, N>
where
    I: Iterator + Clone,
    I::Item: Clone,
{
    fn clone(&self) -> Self {
        Self { iter: self.iter.clone(), buffer: self.buffer.clone() }
    }
}

impl<T, const N: usize> Drop for Buffer<T, N> {
    fn drop(&mut self) {
        // SAFETY: our invariant guarantees that N elements starting from
        // `self.start` are initialized. We drop them here.
        unsafe {
            let initialized_part: *mut [T] = crate::ptr::slice_from_raw_parts_mut(
                self.buffer_mut_ptr().add(self.start).cast(),
                N,
            );
            ptr::drop_in_place(initialized_part);
        }
    }
}

#[unstable(feature = "iter_map_windows", reason = "recently added", issue = "87155")]
impl<I, F, R, const N: usize> Iterator for MapWindows<I, F, N>
where
    I: Iterator,
    F: FnMut(&[I::Item; N]) -> R,
{
    type Item = R;

    fn next(&mut self) -> Option<Self::Item> {
        let window = self.inner.next_window()?;
        let out = (self.f)(window);
        Some(out)
    }

    fn size_hint(&self) -> (usize, Option<usize>) {
        self.inner.size_hint()
    }
}

// Note that even if the inner iterator not fused, the `MapWindows` is still fused,
// because we don't allow "holes" in the mapping window.
#[unstable(feature = "iter_map_windows", reason = "recently added", issue = "87155")]
impl<I, F, R, const N: usize> FusedIterator for MapWindows<I, F, N>
where
    I: Iterator,
    F: FnMut(&[I::Item; N]) -> R,
{
}

#[unstable(feature = "iter_map_windows", reason = "recently added", issue = "87155")]
impl<I, F, R, const N: usize> ExactSizeIterator for MapWindows<I, F, N>
where
    I: ExactSizeIterator,
    F: FnMut(&[I::Item; N]) -> R,
{
}

#[unstable(feature = "iter_map_windows", reason = "recently added", issue = "87155")]
impl<I: Iterator + fmt::Debug, F, const N: usize> fmt::Debug for MapWindows<I, F, N> {
    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
        f.debug_struct("MapWindows").field("iter", &self.inner.iter).finish()
    }
}

#[unstable(feature = "iter_map_windows", reason = "recently added", issue = "87155")]
impl<I, F, const N: usize> Clone for MapWindows<I, F, N>
where
    I: Iterator + Clone,
    F: Clone,
    I::Item: Clone,
{
    fn clone(&self) -> Self {
        Self { f: self.f.clone(), inner: self.inner.clone() }
    }
}