1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972
//! Generic hashing support.
//!
//! This module provides a generic way to compute the [hash] of a value.
//! Hashes are most commonly used with [`HashMap`] and [`HashSet`].
//!
//! [hash]: https://en.wikipedia.org/wiki/Hash_function
//! [`HashMap`]: ../../std/collections/struct.HashMap.html
//! [`HashSet`]: ../../std/collections/struct.HashSet.html
//!
//! The simplest way to make a type hashable is to use `#[derive(Hash)]`:
//!
//! # Examples
//!
//! ```rust
//! use std::hash::{DefaultHasher, Hash, Hasher};
//!
//! #[derive(Hash)]
//! struct Person {
//! id: u32,
//! name: String,
//! phone: u64,
//! }
//!
//! let person1 = Person {
//! id: 5,
//! name: "Janet".to_string(),
//! phone: 555_666_7777,
//! };
//! let person2 = Person {
//! id: 5,
//! name: "Bob".to_string(),
//! phone: 555_666_7777,
//! };
//!
//! assert!(calculate_hash(&person1) != calculate_hash(&person2));
//!
//! fn calculate_hash<T: Hash>(t: &T) -> u64 {
//! let mut s = DefaultHasher::new();
//! t.hash(&mut s);
//! s.finish()
//! }
//! ```
//!
//! If you need more control over how a value is hashed, you need to implement
//! the [`Hash`] trait:
//!
//! ```rust
//! use std::hash::{DefaultHasher, Hash, Hasher};
//!
//! struct Person {
//! id: u32,
//! # #[allow(dead_code)]
//! name: String,
//! phone: u64,
//! }
//!
//! impl Hash for Person {
//! fn hash<H: Hasher>(&self, state: &mut H) {
//! self.id.hash(state);
//! self.phone.hash(state);
//! }
//! }
//!
//! let person1 = Person {
//! id: 5,
//! name: "Janet".to_string(),
//! phone: 555_666_7777,
//! };
//! let person2 = Person {
//! id: 5,
//! name: "Bob".to_string(),
//! phone: 555_666_7777,
//! };
//!
//! assert_eq!(calculate_hash(&person1), calculate_hash(&person2));
//!
//! fn calculate_hash<T: Hash>(t: &T) -> u64 {
//! let mut s = DefaultHasher::new();
//! t.hash(&mut s);
//! s.finish()
//! }
//! ```
#![stable(feature = "rust1", since = "1.0.0")]
use crate::fmt;
use crate::marker;
#[stable(feature = "rust1", since = "1.0.0")]
#[allow(deprecated)]
pub use self::sip::SipHasher;
#[unstable(feature = "hashmap_internals", issue = "none")]
#[allow(deprecated)]
#[doc(hidden)]
pub use self::sip::SipHasher13;
mod sip;
/// A hashable type.
///
/// Types implementing `Hash` are able to be [`hash`]ed with an instance of
/// [`Hasher`].
///
/// ## Implementing `Hash`
///
/// You can derive `Hash` with `#[derive(Hash)]` if all fields implement `Hash`.
/// The resulting hash will be the combination of the values from calling
/// [`hash`] on each field.
///
/// ```
/// #[derive(Hash)]
/// struct Rustacean {
/// name: String,
/// country: String,
/// }
/// ```
///
/// If you need more control over how a value is hashed, you can of course
/// implement the `Hash` trait yourself:
///
/// ```
/// use std::hash::{Hash, Hasher};
///
/// struct Person {
/// id: u32,
/// name: String,
/// phone: u64,
/// }
///
/// impl Hash for Person {
/// fn hash<H: Hasher>(&self, state: &mut H) {
/// self.id.hash(state);
/// self.phone.hash(state);
/// }
/// }
/// ```
///
/// ## `Hash` and `Eq`
///
/// When implementing both `Hash` and [`Eq`], it is important that the following
/// property holds:
///
/// ```text
/// k1 == k2 -> hash(k1) == hash(k2)
/// ```
///
/// In other words, if two keys are equal, their hashes must also be equal.
/// [`HashMap`] and [`HashSet`] both rely on this behavior.
///
/// Thankfully, you won't need to worry about upholding this property when
/// deriving both [`Eq`] and `Hash` with `#[derive(PartialEq, Eq, Hash)]`.
///
/// Violating this property is a logic error. The behavior resulting from a logic error is not
/// specified, but users of the trait must ensure that such logic errors do *not* result in
/// undefined behavior. This means that `unsafe` code **must not** rely on the correctness of these
/// methods.
///
/// ## Prefix collisions
///
/// Implementations of `hash` should ensure that the data they
/// pass to the `Hasher` are prefix-free. That is,
/// values which are not equal should cause two different sequences of values to be written,
/// and neither of the two sequences should be a prefix of the other.
///
/// For example, the standard implementation of [`Hash` for `&str`][impl] passes an extra
/// `0xFF` byte to the `Hasher` so that the values `("ab", "c")` and `("a",
/// "bc")` hash differently.
///
/// ## Portability
///
/// Due to differences in endianness and type sizes, data fed by `Hash` to a `Hasher`
/// should not be considered portable across platforms. Additionally the data passed by most
/// standard library types should not be considered stable between compiler versions.
///
/// This means tests shouldn't probe hard-coded hash values or data fed to a `Hasher` and
/// instead should check consistency with `Eq`.
///
/// Serialization formats intended to be portable between platforms or compiler versions should
/// either avoid encoding hashes or only rely on `Hash` and `Hasher` implementations that
/// provide additional guarantees.
///
/// [`HashMap`]: ../../std/collections/struct.HashMap.html
/// [`HashSet`]: ../../std/collections/struct.HashSet.html
/// [`hash`]: Hash::hash
/// [impl]: ../../std/primitive.str.html#impl-Hash-for-str
#[stable(feature = "rust1", since = "1.0.0")]
#[rustc_diagnostic_item = "Hash"]
pub trait Hash {
/// Feeds this value into the given [`Hasher`].
///
/// # Examples
///
/// ```
/// use std::hash::{DefaultHasher, Hash, Hasher};
///
/// let mut hasher = DefaultHasher::new();
/// 7920.hash(&mut hasher);
/// println!("Hash is {:x}!", hasher.finish());
/// ```
#[stable(feature = "rust1", since = "1.0.0")]
fn hash<H: Hasher>(&self, state: &mut H);
/// Feeds a slice of this type into the given [`Hasher`].
///
/// This method is meant as a convenience, but its implementation is
/// also explicitly left unspecified. It isn't guaranteed to be
/// equivalent to repeated calls of [`hash`] and implementations of
/// [`Hash`] should keep that in mind and call [`hash`] themselves
/// if the slice isn't treated as a whole unit in the [`PartialEq`]
/// implementation.
///
/// For example, a [`VecDeque`] implementation might naïvely call
/// [`as_slices`] and then [`hash_slice`] on each slice, but this
/// is wrong since the two slices can change with a call to
/// [`make_contiguous`] without affecting the [`PartialEq`]
/// result. Since these slices aren't treated as singular
/// units, and instead part of a larger deque, this method cannot
/// be used.
///
/// # Examples
///
/// ```
/// use std::hash::{DefaultHasher, Hash, Hasher};
///
/// let mut hasher = DefaultHasher::new();
/// let numbers = [6, 28, 496, 8128];
/// Hash::hash_slice(&numbers, &mut hasher);
/// println!("Hash is {:x}!", hasher.finish());
/// ```
///
/// [`VecDeque`]: ../../std/collections/struct.VecDeque.html
/// [`as_slices`]: ../../std/collections/struct.VecDeque.html#method.as_slices
/// [`make_contiguous`]: ../../std/collections/struct.VecDeque.html#method.make_contiguous
/// [`hash`]: Hash::hash
/// [`hash_slice`]: Hash::hash_slice
#[stable(feature = "hash_slice", since = "1.3.0")]
fn hash_slice<H: Hasher>(data: &[Self], state: &mut H)
where
Self: Sized,
{
for piece in data {
piece.hash(state)
}
}
}
// Separate module to reexport the macro `Hash` from prelude without the trait `Hash`.
pub(crate) mod macros {
/// Derive macro generating an impl of the trait `Hash`.
#[rustc_builtin_macro]
#[stable(feature = "builtin_macro_prelude", since = "1.38.0")]
#[allow_internal_unstable(core_intrinsics)]
pub macro Hash($item:item) {
/* compiler built-in */
}
}
#[stable(feature = "builtin_macro_prelude", since = "1.38.0")]
#[doc(inline)]
pub use macros::Hash;
/// A trait for hashing an arbitrary stream of bytes.
///
/// Instances of `Hasher` usually represent state that is changed while hashing
/// data.
///
/// `Hasher` provides a fairly basic interface for retrieving the generated hash
/// (with [`finish`]), and writing integers as well as slices of bytes into an
/// instance (with [`write`] and [`write_u8`] etc.). Most of the time, `Hasher`
/// instances are used in conjunction with the [`Hash`] trait.
///
/// This trait provides no guarantees about how the various `write_*` methods are
/// defined and implementations of [`Hash`] should not assume that they work one
/// way or another. You cannot assume, for example, that a [`write_u32`] call is
/// equivalent to four calls of [`write_u8`]. Nor can you assume that adjacent
/// `write` calls are merged, so it's possible, for example, that
/// ```
/// # fn foo(hasher: &mut impl std::hash::Hasher) {
/// hasher.write(&[1, 2]);
/// hasher.write(&[3, 4, 5, 6]);
/// # }
/// ```
/// and
/// ```
/// # fn foo(hasher: &mut impl std::hash::Hasher) {
/// hasher.write(&[1, 2, 3, 4]);
/// hasher.write(&[5, 6]);
/// # }
/// ```
/// end up producing different hashes.
///
/// Thus to produce the same hash value, [`Hash`] implementations must ensure
/// for equivalent items that exactly the same sequence of calls is made -- the
/// same methods with the same parameters in the same order.
///
/// # Examples
///
/// ```
/// use std::hash::{DefaultHasher, Hasher};
///
/// let mut hasher = DefaultHasher::new();
///
/// hasher.write_u32(1989);
/// hasher.write_u8(11);
/// hasher.write_u8(9);
/// hasher.write(b"Huh?");
///
/// println!("Hash is {:x}!", hasher.finish());
/// ```
///
/// [`finish`]: Hasher::finish
/// [`write`]: Hasher::write
/// [`write_u8`]: Hasher::write_u8
/// [`write_u32`]: Hasher::write_u32
#[stable(feature = "rust1", since = "1.0.0")]
pub trait Hasher {
/// Returns the hash value for the values written so far.
///
/// Despite its name, the method does not reset the hasher’s internal
/// state. Additional [`write`]s will continue from the current value.
/// If you need to start a fresh hash value, you will have to create
/// a new hasher.
///
/// # Examples
///
/// ```
/// use std::hash::{DefaultHasher, Hasher};
///
/// let mut hasher = DefaultHasher::new();
/// hasher.write(b"Cool!");
///
/// println!("Hash is {:x}!", hasher.finish());
/// ```
///
/// [`write`]: Hasher::write
#[stable(feature = "rust1", since = "1.0.0")]
fn finish(&self) -> u64;
/// Writes some data into this `Hasher`.
///
/// # Examples
///
/// ```
/// use std::hash::{DefaultHasher, Hasher};
///
/// let mut hasher = DefaultHasher::new();
/// let data = [0x01, 0x23, 0x45, 0x67, 0x89, 0xab, 0xcd, 0xef];
///
/// hasher.write(&data);
///
/// println!("Hash is {:x}!", hasher.finish());
/// ```
///
/// # Note to Implementers
///
/// You generally should not do length-prefixing as part of implementing
/// this method. It's up to the [`Hash`] implementation to call
/// [`Hasher::write_length_prefix`] before sequences that need it.
#[stable(feature = "rust1", since = "1.0.0")]
fn write(&mut self, bytes: &[u8]);
/// Writes a single `u8` into this hasher.
#[inline]
#[stable(feature = "hasher_write", since = "1.3.0")]
fn write_u8(&mut self, i: u8) {
self.write(&[i])
}
/// Writes a single `u16` into this hasher.
#[inline]
#[stable(feature = "hasher_write", since = "1.3.0")]
fn write_u16(&mut self, i: u16) {
self.write(&i.to_ne_bytes())
}
/// Writes a single `u32` into this hasher.
#[inline]
#[stable(feature = "hasher_write", since = "1.3.0")]
fn write_u32(&mut self, i: u32) {
self.write(&i.to_ne_bytes())
}
/// Writes a single `u64` into this hasher.
#[inline]
#[stable(feature = "hasher_write", since = "1.3.0")]
fn write_u64(&mut self, i: u64) {
self.write(&i.to_ne_bytes())
}
/// Writes a single `u128` into this hasher.
#[inline]
#[stable(feature = "i128", since = "1.26.0")]
fn write_u128(&mut self, i: u128) {
self.write(&i.to_ne_bytes())
}
/// Writes a single `usize` into this hasher.
#[inline]
#[stable(feature = "hasher_write", since = "1.3.0")]
fn write_usize(&mut self, i: usize) {
self.write(&i.to_ne_bytes())
}
/// Writes a single `i8` into this hasher.
#[inline]
#[stable(feature = "hasher_write", since = "1.3.0")]
fn write_i8(&mut self, i: i8) {
self.write_u8(i as u8)
}
/// Writes a single `i16` into this hasher.
#[inline]
#[stable(feature = "hasher_write", since = "1.3.0")]
fn write_i16(&mut self, i: i16) {
self.write_u16(i as u16)
}
/// Writes a single `i32` into this hasher.
#[inline]
#[stable(feature = "hasher_write", since = "1.3.0")]
fn write_i32(&mut self, i: i32) {
self.write_u32(i as u32)
}
/// Writes a single `i64` into this hasher.
#[inline]
#[stable(feature = "hasher_write", since = "1.3.0")]
fn write_i64(&mut self, i: i64) {
self.write_u64(i as u64)
}
/// Writes a single `i128` into this hasher.
#[inline]
#[stable(feature = "i128", since = "1.26.0")]
fn write_i128(&mut self, i: i128) {
self.write_u128(i as u128)
}
/// Writes a single `isize` into this hasher.
#[inline]
#[stable(feature = "hasher_write", since = "1.3.0")]
fn write_isize(&mut self, i: isize) {
self.write_usize(i as usize)
}
/// Writes a length prefix into this hasher, as part of being prefix-free.
///
/// If you're implementing [`Hash`] for a custom collection, call this before
/// writing its contents to this `Hasher`. That way
/// `(collection![1, 2, 3], collection![4, 5])` and
/// `(collection![1, 2], collection![3, 4, 5])` will provide different
/// sequences of values to the `Hasher`
///
/// The `impl<T> Hash for [T]` includes a call to this method, so if you're
/// hashing a slice (or array or vector) via its `Hash::hash` method,
/// you should **not** call this yourself.
///
/// This method is only for providing domain separation. If you want to
/// hash a `usize` that represents part of the *data*, then it's important
/// that you pass it to [`Hasher::write_usize`] instead of to this method.
///
/// # Examples
///
/// ```
/// #![feature(hasher_prefixfree_extras)]
/// # // Stubs to make the `impl` below pass the compiler
/// # struct MyCollection<T>(Option<T>);
/// # impl<T> MyCollection<T> {
/// # fn len(&self) -> usize { todo!() }
/// # }
/// # impl<'a, T> IntoIterator for &'a MyCollection<T> {
/// # type Item = T;
/// # type IntoIter = std::iter::Empty<T>;
/// # fn into_iter(self) -> Self::IntoIter { todo!() }
/// # }
///
/// use std::hash::{Hash, Hasher};
/// impl<T: Hash> Hash for MyCollection<T> {
/// fn hash<H: Hasher>(&self, state: &mut H) {
/// state.write_length_prefix(self.len());
/// for elt in self {
/// elt.hash(state);
/// }
/// }
/// }
/// ```
///
/// # Note to Implementers
///
/// If you've decided that your `Hasher` is willing to be susceptible to
/// Hash-DoS attacks, then you might consider skipping hashing some or all
/// of the `len` provided in the name of increased performance.
#[inline]
#[unstable(feature = "hasher_prefixfree_extras", issue = "96762")]
fn write_length_prefix(&mut self, len: usize) {
self.write_usize(len);
}
/// Writes a single `str` into this hasher.
///
/// If you're implementing [`Hash`], you generally do not need to call this,
/// as the `impl Hash for str` does, so you should prefer that instead.
///
/// This includes the domain separator for prefix-freedom, so you should
/// **not** call `Self::write_length_prefix` before calling this.
///
/// # Note to Implementers
///
/// There are at least two reasonable default ways to implement this.
/// Which one will be the default is not yet decided, so for now
/// you probably want to override it specifically.
///
/// ## The general answer
///
/// It's always correct to implement this with a length prefix:
///
/// ```
/// # #![feature(hasher_prefixfree_extras)]
/// # struct Foo;
/// # impl std::hash::Hasher for Foo {
/// # fn finish(&self) -> u64 { unimplemented!() }
/// # fn write(&mut self, _bytes: &[u8]) { unimplemented!() }
/// fn write_str(&mut self, s: &str) {
/// self.write_length_prefix(s.len());
/// self.write(s.as_bytes());
/// }
/// # }
/// ```
///
/// And, if your `Hasher` works in `usize` chunks, this is likely a very
/// efficient way to do it, as anything more complicated may well end up
/// slower than just running the round with the length.
///
/// ## If your `Hasher` works byte-wise
///
/// One nice thing about `str` being UTF-8 is that the `b'\xFF'` byte
/// never happens. That means that you can append that to the byte stream
/// being hashed and maintain prefix-freedom:
///
/// ```
/// # #![feature(hasher_prefixfree_extras)]
/// # struct Foo;
/// # impl std::hash::Hasher for Foo {
/// # fn finish(&self) -> u64 { unimplemented!() }
/// # fn write(&mut self, _bytes: &[u8]) { unimplemented!() }
/// fn write_str(&mut self, s: &str) {
/// self.write(s.as_bytes());
/// self.write_u8(0xff);
/// }
/// # }
/// ```
///
/// This does require that your implementation not add extra padding, and
/// thus generally requires that you maintain a buffer, running a round
/// only once that buffer is full (or `finish` is called).
///
/// That's because if `write` pads data out to a fixed chunk size, it's
/// likely that it does it in such a way that `"a"` and `"a\x00"` would
/// end up hashing the same sequence of things, introducing conflicts.
#[inline]
#[unstable(feature = "hasher_prefixfree_extras", issue = "96762")]
fn write_str(&mut self, s: &str) {
self.write(s.as_bytes());
self.write_u8(0xff);
}
}
#[stable(feature = "indirect_hasher_impl", since = "1.22.0")]
impl<H: Hasher + ?Sized> Hasher for &mut H {
fn finish(&self) -> u64 {
(**self).finish()
}
fn write(&mut self, bytes: &[u8]) {
(**self).write(bytes)
}
fn write_u8(&mut self, i: u8) {
(**self).write_u8(i)
}
fn write_u16(&mut self, i: u16) {
(**self).write_u16(i)
}
fn write_u32(&mut self, i: u32) {
(**self).write_u32(i)
}
fn write_u64(&mut self, i: u64) {
(**self).write_u64(i)
}
fn write_u128(&mut self, i: u128) {
(**self).write_u128(i)
}
fn write_usize(&mut self, i: usize) {
(**self).write_usize(i)
}
fn write_i8(&mut self, i: i8) {
(**self).write_i8(i)
}
fn write_i16(&mut self, i: i16) {
(**self).write_i16(i)
}
fn write_i32(&mut self, i: i32) {
(**self).write_i32(i)
}
fn write_i64(&mut self, i: i64) {
(**self).write_i64(i)
}
fn write_i128(&mut self, i: i128) {
(**self).write_i128(i)
}
fn write_isize(&mut self, i: isize) {
(**self).write_isize(i)
}
fn write_length_prefix(&mut self, len: usize) {
(**self).write_length_prefix(len)
}
fn write_str(&mut self, s: &str) {
(**self).write_str(s)
}
}
/// A trait for creating instances of [`Hasher`].
///
/// A `BuildHasher` is typically used (e.g., by [`HashMap`]) to create
/// [`Hasher`]s for each key such that they are hashed independently of one
/// another, since [`Hasher`]s contain state.
///
/// For each instance of `BuildHasher`, the [`Hasher`]s created by
/// [`build_hasher`] should be identical. That is, if the same stream of bytes
/// is fed into each hasher, the same output will also be generated.
///
/// # Examples
///
/// ```
/// use std::hash::{BuildHasher, Hasher, RandomState};
///
/// let s = RandomState::new();
/// let mut hasher_1 = s.build_hasher();
/// let mut hasher_2 = s.build_hasher();
///
/// hasher_1.write_u32(8128);
/// hasher_2.write_u32(8128);
///
/// assert_eq!(hasher_1.finish(), hasher_2.finish());
/// ```
///
/// [`build_hasher`]: BuildHasher::build_hasher
/// [`HashMap`]: ../../std/collections/struct.HashMap.html
#[stable(since = "1.7.0", feature = "build_hasher")]
pub trait BuildHasher {
/// Type of the hasher that will be created.
#[stable(since = "1.7.0", feature = "build_hasher")]
type Hasher: Hasher;
/// Creates a new hasher.
///
/// Each call to `build_hasher` on the same instance should produce identical
/// [`Hasher`]s.
///
/// # Examples
///
/// ```
/// use std::hash::{BuildHasher, RandomState};
///
/// let s = RandomState::new();
/// let new_s = s.build_hasher();
/// ```
#[stable(since = "1.7.0", feature = "build_hasher")]
fn build_hasher(&self) -> Self::Hasher;
/// Calculates the hash of a single value.
///
/// This is intended as a convenience for code which *consumes* hashes, such
/// as the implementation of a hash table or in unit tests that check
/// whether a custom [`Hash`] implementation behaves as expected.
///
/// This must not be used in any code which *creates* hashes, such as in an
/// implementation of [`Hash`]. The way to create a combined hash of
/// multiple values is to call [`Hash::hash`] multiple times using the same
/// [`Hasher`], not to call this method repeatedly and combine the results.
///
/// # Example
///
/// ```
/// use std::cmp::{max, min};
/// use std::hash::{BuildHasher, Hash, Hasher};
/// struct OrderAmbivalentPair<T: Ord>(T, T);
/// impl<T: Ord + Hash> Hash for OrderAmbivalentPair<T> {
/// fn hash<H: Hasher>(&self, hasher: &mut H) {
/// min(&self.0, &self.1).hash(hasher);
/// max(&self.0, &self.1).hash(hasher);
/// }
/// }
///
/// // Then later, in a `#[test]` for the type...
/// let bh = std::hash::RandomState::new();
/// assert_eq!(
/// bh.hash_one(OrderAmbivalentPair(1, 2)),
/// bh.hash_one(OrderAmbivalentPair(2, 1))
/// );
/// assert_eq!(
/// bh.hash_one(OrderAmbivalentPair(10, 2)),
/// bh.hash_one(&OrderAmbivalentPair(2, 10))
/// );
/// ```
#[stable(feature = "build_hasher_simple_hash_one", since = "1.71.0")]
fn hash_one<T: Hash>(&self, x: T) -> u64
where
Self: Sized,
Self::Hasher: Hasher,
{
let mut hasher = self.build_hasher();
x.hash(&mut hasher);
hasher.finish()
}
}
/// Used to create a default [`BuildHasher`] instance for types that implement
/// [`Hasher`] and [`Default`].
///
/// `BuildHasherDefault<H>` can be used when a type `H` implements [`Hasher`] and
/// [`Default`], and you need a corresponding [`BuildHasher`] instance, but none is
/// defined.
///
/// Any `BuildHasherDefault` is [zero-sized]. It can be created with
/// [`default`][method.default]. When using `BuildHasherDefault` with [`HashMap`] or
/// [`HashSet`], this doesn't need to be done, since they implement appropriate
/// [`Default`] instances themselves.
///
/// # Examples
///
/// Using `BuildHasherDefault` to specify a custom [`BuildHasher`] for
/// [`HashMap`]:
///
/// ```
/// use std::collections::HashMap;
/// use std::hash::{BuildHasherDefault, Hasher};
///
/// #[derive(Default)]
/// struct MyHasher;
///
/// impl Hasher for MyHasher {
/// fn write(&mut self, bytes: &[u8]) {
/// // Your hashing algorithm goes here!
/// unimplemented!()
/// }
///
/// fn finish(&self) -> u64 {
/// // Your hashing algorithm goes here!
/// unimplemented!()
/// }
/// }
///
/// type MyBuildHasher = BuildHasherDefault<MyHasher>;
///
/// let hash_map = HashMap::<u32, u32, MyBuildHasher>::default();
/// ```
///
/// [method.default]: BuildHasherDefault::default
/// [`HashMap`]: ../../std/collections/struct.HashMap.html
/// [`HashSet`]: ../../std/collections/struct.HashSet.html
/// [zero-sized]: https://doc.rust-lang.org/nomicon/exotic-sizes.html#zero-sized-types-zsts
#[stable(since = "1.7.0", feature = "build_hasher")]
pub struct BuildHasherDefault<H>(marker::PhantomData<fn() -> H>);
#[stable(since = "1.9.0", feature = "core_impl_debug")]
impl<H> fmt::Debug for BuildHasherDefault<H> {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
f.debug_struct("BuildHasherDefault").finish()
}
}
#[stable(since = "1.7.0", feature = "build_hasher")]
impl<H: Default + Hasher> BuildHasher for BuildHasherDefault<H> {
type Hasher = H;
fn build_hasher(&self) -> H {
H::default()
}
}
#[stable(since = "1.7.0", feature = "build_hasher")]
impl<H> Clone for BuildHasherDefault<H> {
fn clone(&self) -> BuildHasherDefault<H> {
BuildHasherDefault(marker::PhantomData)
}
}
#[stable(since = "1.7.0", feature = "build_hasher")]
impl<H> Default for BuildHasherDefault<H> {
fn default() -> BuildHasherDefault<H> {
BuildHasherDefault(marker::PhantomData)
}
}
#[stable(since = "1.29.0", feature = "build_hasher_eq")]
impl<H> PartialEq for BuildHasherDefault<H> {
fn eq(&self, _other: &BuildHasherDefault<H>) -> bool {
true
}
}
#[stable(since = "1.29.0", feature = "build_hasher_eq")]
impl<H> Eq for BuildHasherDefault<H> {}
mod impls {
use crate::mem;
use crate::slice;
use super::*;
macro_rules! impl_write {
($(($ty:ident, $meth:ident),)*) => {$(
#[stable(feature = "rust1", since = "1.0.0")]
impl Hash for $ty {
#[inline]
fn hash<H: Hasher>(&self, state: &mut H) {
state.$meth(*self)
}
#[inline]
fn hash_slice<H: Hasher>(data: &[$ty], state: &mut H) {
let newlen = mem::size_of_val(data);
let ptr = data.as_ptr() as *const u8;
// SAFETY: `ptr` is valid and aligned, as this macro is only used
// for numeric primitives which have no padding. The new slice only
// spans across `data` and is never mutated, and its total size is the
// same as the original `data` so it can't be over `isize::MAX`.
state.write(unsafe { slice::from_raw_parts(ptr, newlen) })
}
}
)*}
}
impl_write! {
(u8, write_u8),
(u16, write_u16),
(u32, write_u32),
(u64, write_u64),
(usize, write_usize),
(i8, write_i8),
(i16, write_i16),
(i32, write_i32),
(i64, write_i64),
(isize, write_isize),
(u128, write_u128),
(i128, write_i128),
}
#[stable(feature = "rust1", since = "1.0.0")]
impl Hash for bool {
#[inline]
fn hash<H: Hasher>(&self, state: &mut H) {
state.write_u8(*self as u8)
}
}
#[stable(feature = "rust1", since = "1.0.0")]
impl Hash for char {
#[inline]
fn hash<H: Hasher>(&self, state: &mut H) {
state.write_u32(*self as u32)
}
}
#[stable(feature = "rust1", since = "1.0.0")]
impl Hash for str {
#[inline]
fn hash<H: Hasher>(&self, state: &mut H) {
state.write_str(self);
}
}
#[stable(feature = "never_hash", since = "1.29.0")]
impl Hash for ! {
#[inline]
fn hash<H: Hasher>(&self, _: &mut H) {
*self
}
}
macro_rules! impl_hash_tuple {
() => (
#[stable(feature = "rust1", since = "1.0.0")]
impl Hash for () {
#[inline]
fn hash<H: Hasher>(&self, _state: &mut H) {}
}
);
( $($name:ident)+) => (
maybe_tuple_doc! {
$($name)+ @
#[stable(feature = "rust1", since = "1.0.0")]
impl<$($name: Hash),+> Hash for ($($name,)+) where last_type!($($name,)+): ?Sized {
#[allow(non_snake_case)]
#[inline]
fn hash<S: Hasher>(&self, state: &mut S) {
let ($(ref $name,)+) = *self;
$($name.hash(state);)+
}
}
}
);
}
macro_rules! maybe_tuple_doc {
($a:ident @ #[$meta:meta] $item:item) => {
#[doc(fake_variadic)]
#[doc = "This trait is implemented for tuples up to twelve items long."]
#[$meta]
$item
};
($a:ident $($rest_a:ident)+ @ #[$meta:meta] $item:item) => {
#[doc(hidden)]
#[$meta]
$item
};
}
macro_rules! last_type {
($a:ident,) => { $a };
($a:ident, $($rest_a:ident,)+) => { last_type!($($rest_a,)+) };
}
impl_hash_tuple! {}
impl_hash_tuple! { T }
impl_hash_tuple! { T B }
impl_hash_tuple! { T B C }
impl_hash_tuple! { T B C D }
impl_hash_tuple! { T B C D E }
impl_hash_tuple! { T B C D E F }
impl_hash_tuple! { T B C D E F G }
impl_hash_tuple! { T B C D E F G H }
impl_hash_tuple! { T B C D E F G H I }
impl_hash_tuple! { T B C D E F G H I J }
impl_hash_tuple! { T B C D E F G H I J K }
impl_hash_tuple! { T B C D E F G H I J K L }
#[stable(feature = "rust1", since = "1.0.0")]
impl<T: Hash> Hash for [T] {
#[inline]
fn hash<H: Hasher>(&self, state: &mut H) {
state.write_length_prefix(self.len());
Hash::hash_slice(self, state)
}
}
#[stable(feature = "rust1", since = "1.0.0")]
impl<T: ?Sized + Hash> Hash for &T {
#[inline]
fn hash<H: Hasher>(&self, state: &mut H) {
(**self).hash(state);
}
}
#[stable(feature = "rust1", since = "1.0.0")]
impl<T: ?Sized + Hash> Hash for &mut T {
#[inline]
fn hash<H: Hasher>(&self, state: &mut H) {
(**self).hash(state);
}
}
#[stable(feature = "rust1", since = "1.0.0")]
impl<T: ?Sized> Hash for *const T {
#[inline]
fn hash<H: Hasher>(&self, state: &mut H) {
let (address, metadata) = self.to_raw_parts();
state.write_usize(address.addr());
metadata.hash(state);
}
}
#[stable(feature = "rust1", since = "1.0.0")]
impl<T: ?Sized> Hash for *mut T {
#[inline]
fn hash<H: Hasher>(&self, state: &mut H) {
let (address, metadata) = self.to_raw_parts();
state.write_usize(address.addr());
metadata.hash(state);
}
}
}