1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216
#![allow(missing_debug_implementations)]
#![unstable(feature = "fmt_internals", reason = "internal to format_args!", issue = "none")]
//! These are the lang items used by format_args!().
use super::*;
#[lang = "format_placeholder"]
#[derive(Copy, Clone)]
pub struct Placeholder {
pub position: usize,
pub fill: char,
pub align: Alignment,
pub flags: u32,
pub precision: Count,
pub width: Count,
}
impl Placeholder {
#[inline(always)]
pub const fn new(
position: usize,
fill: char,
align: Alignment,
flags: u32,
precision: Count,
width: Count,
) -> Self {
Self { position, fill, align, flags, precision, width }
}
}
#[lang = "format_alignment"]
#[derive(Copy, Clone, PartialEq, Eq)]
pub enum Alignment {
Left,
Right,
Center,
Unknown,
}
/// Used by [width](https://doc.rust-lang.org/std/fmt/#width)
/// and [precision](https://doc.rust-lang.org/std/fmt/#precision) specifiers.
#[lang = "format_count"]
#[derive(Copy, Clone)]
pub enum Count {
/// Specified with a literal number, stores the value
Is(usize),
/// Specified using `$` and `*` syntaxes, stores the index into `args`
Param(usize),
/// Not specified
Implied,
}
// This needs to match the order of flags in compiler/rustc_ast_lowering/src/format.rs.
#[derive(Copy, Clone)]
pub(super) enum Flag {
SignPlus,
SignMinus,
Alternate,
SignAwareZeroPad,
DebugLowerHex,
DebugUpperHex,
}
/// This struct represents the generic "argument" which is taken by format_args!().
/// It contains a function to format the given value. At compile time it is ensured that the
/// function and the value have the correct types, and then this struct is used to canonicalize
/// arguments to one type.
///
/// Argument is essentially an optimized partially applied formatting function,
/// equivalent to `exists T.(&T, fn(&T, &mut Formatter<'_>) -> Result`.
#[lang = "format_argument"]
#[derive(Copy, Clone)]
pub struct Argument<'a> {
value: &'a Opaque,
formatter: fn(&Opaque, &mut Formatter<'_>) -> Result,
}
#[rustc_diagnostic_item = "ArgumentMethods"]
impl<'a> Argument<'a> {
#[inline(always)]
fn new<'b, T>(x: &'b T, f: fn(&T, &mut Formatter<'_>) -> Result) -> Argument<'b> {
// SAFETY: `mem::transmute(x)` is safe because
// 1. `&'b T` keeps the lifetime it originated with `'b`
// (so as to not have an unbounded lifetime)
// 2. `&'b T` and `&'b Opaque` have the same memory layout
// (when `T` is `Sized`, as it is here)
// `mem::transmute(f)` is safe since `fn(&T, &mut Formatter<'_>) -> Result`
// and `fn(&Opaque, &mut Formatter<'_>) -> Result` have the same ABI
// (as long as `T` is `Sized`)
unsafe { Argument { formatter: mem::transmute(f), value: mem::transmute(x) } }
}
#[inline(always)]
pub fn new_display<'b, T: Display>(x: &'b T) -> Argument<'_> {
Self::new(x, Display::fmt)
}
#[inline(always)]
pub fn new_debug<'b, T: Debug>(x: &'b T) -> Argument<'_> {
Self::new(x, Debug::fmt)
}
#[inline(always)]
pub fn new_octal<'b, T: Octal>(x: &'b T) -> Argument<'_> {
Self::new(x, Octal::fmt)
}
#[inline(always)]
pub fn new_lower_hex<'b, T: LowerHex>(x: &'b T) -> Argument<'_> {
Self::new(x, LowerHex::fmt)
}
#[inline(always)]
pub fn new_upper_hex<'b, T: UpperHex>(x: &'b T) -> Argument<'_> {
Self::new(x, UpperHex::fmt)
}
#[inline(always)]
pub fn new_pointer<'b, T: Pointer>(x: &'b T) -> Argument<'_> {
Self::new(x, Pointer::fmt)
}
#[inline(always)]
pub fn new_binary<'b, T: Binary>(x: &'b T) -> Argument<'_> {
Self::new(x, Binary::fmt)
}
#[inline(always)]
pub fn new_lower_exp<'b, T: LowerExp>(x: &'b T) -> Argument<'_> {
Self::new(x, LowerExp::fmt)
}
#[inline(always)]
pub fn new_upper_exp<'b, T: UpperExp>(x: &'b T) -> Argument<'_> {
Self::new(x, UpperExp::fmt)
}
#[inline(always)]
pub fn from_usize(x: &usize) -> Argument<'_> {
Self::new(x, USIZE_MARKER)
}
// FIXME: Transmuting formatter in new and indirectly branching to/calling
// it here is an explicit CFI violation.
#[allow(inline_no_sanitize)]
#[no_sanitize(cfi, kcfi)]
#[inline(always)]
pub(super) fn fmt(&self, f: &mut Formatter<'_>) -> Result {
(self.formatter)(self.value, f)
}
#[inline(always)]
pub(super) fn as_usize(&self) -> Option<usize> {
// We are type punning a bit here: USIZE_MARKER only takes an &usize but
// formatter takes an &Opaque. Rust understandably doesn't think we should compare
// the function pointers if they don't have the same signature, so we cast to
// usizes to tell it that we just want to compare addresses.
if self.formatter as usize == USIZE_MARKER as usize {
// SAFETY: The `formatter` field is only set to USIZE_MARKER if
// the value is a usize, so this is safe
Some(unsafe { *(self.value as *const _ as *const usize) })
} else {
None
}
}
/// Used by `format_args` when all arguments are gone after inlining,
/// when using `&[]` would incorrectly allow for a bigger lifetime.
///
/// This fails without format argument inlining, and that shouldn't be different
/// when the argument is inlined:
///
/// ```compile_fail,E0716
/// let f = format_args!("{}", "a");
/// println!("{f}");
/// ```
#[inline(always)]
pub fn none() -> [Self; 0] {
[]
}
}
/// This struct represents the unsafety of constructing an `Arguments`.
/// It exists, rather than an unsafe function, in order to simplify the expansion
/// of `format_args!(..)` and reduce the scope of the `unsafe` block.
#[lang = "format_unsafe_arg"]
pub struct UnsafeArg {
_private: (),
}
impl UnsafeArg {
/// See documentation where `UnsafeArg` is required to know when it is safe to
/// create and use `UnsafeArg`.
#[inline(always)]
pub unsafe fn new() -> Self {
Self { _private: () }
}
}
extern "C" {
type Opaque;
}
// This guarantees a single stable value for the function pointer associated with
// indices/counts in the formatting infrastructure.
//
// Note that a function defined as such would not be correct as functions are
// always tagged unnamed_addr with the current lowering to LLVM IR, so their
// address is not considered important to LLVM and as such the as_usize cast
// could have been miscompiled. In practice, we never call as_usize on non-usize
// containing data (as a matter of static generation of the formatting
// arguments), so this is merely an additional check.
//
// We primarily want to ensure that the function pointer at `USIZE_MARKER` has
// an address corresponding *only* to functions that also take `&usize` as their
// first argument. The read_volatile here ensures that we can safely ready out a
// usize from the passed reference and that this address does not point at a
// non-usize taking function.
static USIZE_MARKER: fn(&usize, &mut Formatter<'_>) -> Result = |ptr, _| {
// SAFETY: ptr is a reference
let _v: usize = unsafe { crate::ptr::read_volatile(ptr) };
loop {}
};