1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
//! Traits for conversions between types.
//!
//! The traits in this module provide a way to convert from one type to another type.
//! Each trait serves a different purpose:
//!
//! - Implement the [`AsRef`] trait for cheap reference-to-reference conversions
//! - Implement the [`AsMut`] trait for cheap mutable-to-mutable conversions
//! - Implement the [`From`] trait for consuming value-to-value conversions
//! - Implement the [`Into`] trait for consuming value-to-value conversions to types
//!   outside the current crate
//! - The [`TryFrom`] and [`TryInto`] traits behave like [`From`] and [`Into`],
//!   but should be implemented when the conversion can fail.
//!
//! The traits in this module are often used as trait bounds for generic functions such that to
//! arguments of multiple types are supported. See the documentation of each trait for examples.
//!
//! As a library author, you should always prefer implementing [`From<T>`][`From`] or
//! [`TryFrom<T>`][`TryFrom`] rather than [`Into<U>`][`Into`] or [`TryInto<U>`][`TryInto`],
//! as [`From`] and [`TryFrom`] provide greater flexibility and offer
//! equivalent [`Into`] or [`TryInto`] implementations for free, thanks to a
//! blanket implementation in the standard library. When targeting a version prior to Rust 1.41, it
//! may be necessary to implement [`Into`] or [`TryInto`] directly when converting to a type
//! outside the current crate.
//!
//! # Generic Implementations
//!
//! - [`AsRef`] and [`AsMut`] auto-dereference if the inner type is a reference
//!   (but not generally for all [dereferenceable types][core::ops::Deref])
//! - [`From`]`<U> for T` implies [`Into`]`<T> for U`
//! - [`TryFrom`]`<U> for T` implies [`TryInto`]`<T> for U`
//! - [`From`] and [`Into`] are reflexive, which means that all types can
//!   `into` themselves and `from` themselves
//!
//! See each trait for usage examples.

#![stable(feature = "rust1", since = "1.0.0")]

use crate::error::Error;
use crate::fmt;
use crate::hash::{Hash, Hasher};

mod num;

#[unstable(feature = "convert_float_to_int", issue = "67057")]
pub use num::FloatToInt;

/// The identity function.
///
/// Two things are important to note about this function:
///
/// - It is not always equivalent to a closure like `|x| x`, since the
///   closure may coerce `x` into a different type.
///
/// - It moves the input `x` passed to the function.
///
/// While it might seem strange to have a function that just returns back the
/// input, there are some interesting uses.
///
/// # Examples
///
/// Using `identity` to do nothing in a sequence of other, interesting,
/// functions:
///
/// ```rust
/// use std::convert::identity;
///
/// fn manipulation(x: u32) -> u32 {
///     // Let's pretend that adding one is an interesting function.
///     x + 1
/// }
///
/// let _arr = &[identity, manipulation];
/// ```
///
/// Using `identity` as a "do nothing" base case in a conditional:
///
/// ```rust
/// use std::convert::identity;
///
/// # let condition = true;
/// #
/// # fn manipulation(x: u32) -> u32 { x + 1 }
/// #
/// let do_stuff = if condition { manipulation } else { identity };
///
/// // Do more interesting stuff...
///
/// let _results = do_stuff(42);
/// ```
///
/// Using `identity` to keep the `Some` variants of an iterator of `Option<T>`:
///
/// ```rust
/// use std::convert::identity;
///
/// let iter = [Some(1), None, Some(3)].into_iter();
/// let filtered = iter.filter_map(identity).collect::<Vec<_>>();
/// assert_eq!(vec![1, 3], filtered);
/// ```
#[stable(feature = "convert_id", since = "1.33.0")]
#[rustc_const_stable(feature = "const_identity", since = "1.33.0")]
#[inline(always)]
#[rustc_diagnostic_item = "convert_identity"]
pub const fn identity<T>(x: T) -> T {
    x
}

/// Used to do a cheap reference-to-reference conversion.
///
/// This trait is similar to [`AsMut`] which is used for converting between mutable references.
/// If you need to do a costly conversion it is better to implement [`From`] with type
/// `&T` or write a custom function.
///
/// # Relation to `Borrow`
///
/// `AsRef` has the same signature as [`Borrow`], but [`Borrow`] is different in a few aspects:
///
/// - Unlike `AsRef`, [`Borrow`] has a blanket impl for any `T`, and can be used to accept either
///   a reference or a value. (See also note on `AsRef`'s reflexibility below.)
/// - [`Borrow`] also requires that [`Hash`], [`Eq`] and [`Ord`] for a borrowed value are
///   equivalent to those of the owned value. For this reason, if you want to
///   borrow only a single field of a struct you can implement `AsRef`, but not [`Borrow`].
///
/// **Note: This trait must not fail**. If the conversion can fail, use a
/// dedicated method which returns an [`Option<T>`] or a [`Result<T, E>`].
///
/// # Generic Implementations
///
/// `AsRef` auto-dereferences if the inner type is a reference or a mutable reference
/// (e.g.: `foo.as_ref()` will work the same if `foo` has type `&mut Foo` or `&&mut Foo`).
///
/// Note that due to historic reasons, the above currently does not hold generally for all
/// [dereferenceable types], e.g. `foo.as_ref()` will *not* work the same as
/// `Box::new(foo).as_ref()`. Instead, many smart pointers provide an `as_ref` implementation which
/// simply returns a reference to the [pointed-to value] (but do not perform a cheap
/// reference-to-reference conversion for that value). However, [`AsRef::as_ref`] should not be
/// used for the sole purpose of dereferencing; instead ['`Deref` coercion'] can be used:
///
/// [dereferenceable types]: core::ops::Deref
/// [pointed-to value]: core::ops::Deref::Target
/// ['`Deref` coercion']: core::ops::Deref#deref-coercion
///
/// ```
/// let x = Box::new(5i32);
/// // Avoid this:
/// // let y: &i32 = x.as_ref();
/// // Better just write:
/// let y: &i32 = &x;
/// ```
///
/// Types which implement [`Deref`] should consider implementing `AsRef<T>` as follows:
///
/// [`Deref`]: core::ops::Deref
///
/// ```
/// # use core::ops::Deref;
/// # struct SomeType;
/// # impl Deref for SomeType {
/// #     type Target = [u8];
/// #     fn deref(&self) -> &[u8] {
/// #         &[]
/// #     }
/// # }
/// impl<T> AsRef<T> for SomeType
/// where
///     T: ?Sized,
///     <SomeType as Deref>::Target: AsRef<T>,
/// {
///     fn as_ref(&self) -> &T {
///         self.deref().as_ref()
///     }
/// }
/// ```
///
/// # Reflexivity
///
/// Ideally, `AsRef` would be reflexive, i.e. there would be an `impl<T: ?Sized> AsRef<T> for T`
/// with [`as_ref`] simply returning its argument unchanged.
/// Such a blanket implementation is currently *not* provided due to technical restrictions of
/// Rust's type system (it would be overlapping with another existing blanket implementation for
/// `&T where T: AsRef<U>` which allows `AsRef` to auto-dereference, see "Generic Implementations"
/// above).
///
/// [`as_ref`]: AsRef::as_ref
///
/// A trivial implementation of `AsRef<T> for T` must be added explicitly for a particular type `T`
/// where needed or desired. Note, however, that not all types from `std` contain such an
/// implementation, and those cannot be added by external code due to orphan rules.
///
/// # Examples
///
/// By using trait bounds we can accept arguments of different types as long as they can be
/// converted to the specified type `T`.
///
/// For example: By creating a generic function that takes an `AsRef<str>` we express that we
/// want to accept all references that can be converted to [`&str`] as an argument.
/// Since both [`String`] and [`&str`] implement `AsRef<str>` we can accept both as input argument.
///
/// [`&str`]: primitive@str
/// [`Borrow`]: crate::borrow::Borrow
/// [`Eq`]: crate::cmp::Eq
/// [`Ord`]: crate::cmp::Ord
/// [`String`]: ../../std/string/struct.String.html
///
/// ```
/// fn is_hello<T: AsRef<str>>(s: T) {
///    assert_eq!("hello", s.as_ref());
/// }
///
/// let s = "hello";
/// is_hello(s);
///
/// let s = "hello".to_string();
/// is_hello(s);
/// ```
#[stable(feature = "rust1", since = "1.0.0")]
#[cfg_attr(not(test), rustc_diagnostic_item = "AsRef")]
pub trait AsRef<T: ?Sized> {
    /// Converts this type into a shared reference of the (usually inferred) input type.
    #[stable(feature = "rust1", since = "1.0.0")]
    fn as_ref(&self) -> &T;
}

/// Used to do a cheap mutable-to-mutable reference conversion.
///
/// This trait is similar to [`AsRef`] but used for converting between mutable
/// references. If you need to do a costly conversion it is better to
/// implement [`From`] with type `&mut T` or write a custom function.
///
/// **Note: This trait must not fail**. If the conversion can fail, use a
/// dedicated method which returns an [`Option<T>`] or a [`Result<T, E>`].
///
/// # Generic Implementations
///
/// `AsMut` auto-dereferences if the inner type is a mutable reference
/// (e.g.: `foo.as_mut()` will work the same if `foo` has type `&mut Foo` or `&mut &mut Foo`).
///
/// Note that due to historic reasons, the above currently does not hold generally for all
/// [mutably dereferenceable types], e.g. `foo.as_mut()` will *not* work the same as
/// `Box::new(foo).as_mut()`. Instead, many smart pointers provide an `as_mut` implementation which
/// simply returns a reference to the [pointed-to value] (but do not perform a cheap
/// reference-to-reference conversion for that value). However, [`AsMut::as_mut`] should not be
/// used for the sole purpose of mutable dereferencing; instead ['`Deref` coercion'] can be used:
///
/// [mutably dereferenceable types]: core::ops::DerefMut
/// [pointed-to value]: core::ops::Deref::Target
/// ['`Deref` coercion']: core::ops::DerefMut#mutable-deref-coercion
///
/// ```
/// let mut x = Box::new(5i32);
/// // Avoid this:
/// // let y: &mut i32 = x.as_mut();
/// // Better just write:
/// let y: &mut i32 = &mut x;
/// ```
///
/// Types which implement [`DerefMut`] should consider to add an implementation of `AsMut<T>` as
/// follows:
///
/// [`DerefMut`]: core::ops::DerefMut
///
/// ```
/// # use core::ops::{Deref, DerefMut};
/// # struct SomeType;
/// # impl Deref for SomeType {
/// #     type Target = [u8];
/// #     fn deref(&self) -> &[u8] {
/// #         &[]
/// #     }
/// # }
/// # impl DerefMut for SomeType {
/// #     fn deref_mut(&mut self) -> &mut [u8] {
/// #         &mut []
/// #     }
/// # }
/// impl<T> AsMut<T> for SomeType
/// where
///     <SomeType as Deref>::Target: AsMut<T>,
/// {
///     fn as_mut(&mut self) -> &mut T {
///         self.deref_mut().as_mut()
///     }
/// }
/// ```
///
/// # Reflexivity
///
/// Ideally, `AsMut` would be reflexive, i.e. there would be an `impl<T: ?Sized> AsMut<T> for T`
/// with [`as_mut`] simply returning its argument unchanged.
/// Such a blanket implementation is currently *not* provided due to technical restrictions of
/// Rust's type system (it would be overlapping with another existing blanket implementation for
/// `&mut T where T: AsMut<U>` which allows `AsMut` to auto-dereference, see "Generic
/// Implementations" above).
///
/// [`as_mut`]: AsMut::as_mut
///
/// A trivial implementation of `AsMut<T> for T` must be added explicitly for a particular type `T`
/// where needed or desired. Note, however, that not all types from `std` contain such an
/// implementation, and those cannot be added by external code due to orphan rules.
///
/// # Examples
///
/// Using `AsMut` as trait bound for a generic function, we can accept all mutable references that
/// can be converted to type `&mut T`. Unlike [dereference], which has a single [target type],
/// there can be multiple implementations of `AsMut` for a type. In particular, `Vec<T>` implements
/// both `AsMut<Vec<T>>` and `AsMut<[T]>`.
///
/// In the following, the example functions `caesar` and `null_terminate` provide a generic
/// interface which work with any type that can be converted by cheap mutable-to-mutable conversion
/// into a byte slice (`[u8]`) or byte vector (`Vec<u8>`), respectively.
///
/// [dereference]: core::ops::DerefMut
/// [target type]: core::ops::Deref::Target
///
/// ```
/// struct Document {
///     info: String,
///     content: Vec<u8>,
/// }
///
/// impl<T: ?Sized> AsMut<T> for Document
/// where
///     Vec<u8>: AsMut<T>,
/// {
///     fn as_mut(&mut self) -> &mut T {
///         self.content.as_mut()
///     }
/// }
///
/// fn caesar<T: AsMut<[u8]>>(data: &mut T, key: u8) {
///     for byte in data.as_mut() {
///         *byte = byte.wrapping_add(key);
///     }
/// }
///
/// fn null_terminate<T: AsMut<Vec<u8>>>(data: &mut T) {
///     // Using a non-generic inner function, which contains most of the
///     // functionality, helps to minimize monomorphization overhead.
///     fn doit(data: &mut Vec<u8>) {
///         let len = data.len();
///         if len == 0 || data[len-1] != 0 {
///             data.push(0);
///         }
///     }
///     doit(data.as_mut());
/// }
///
/// fn main() {
///     let mut v: Vec<u8> = vec![1, 2, 3];
///     caesar(&mut v, 5);
///     assert_eq!(v, [6, 7, 8]);
///     null_terminate(&mut v);
///     assert_eq!(v, [6, 7, 8, 0]);
///     let mut doc = Document {
///         info: String::from("Example"),
///         content: vec![17, 19, 8],
///     };
///     caesar(&mut doc, 1);
///     assert_eq!(doc.content, [18, 20, 9]);
///     null_terminate(&mut doc);
///     assert_eq!(doc.content, [18, 20, 9, 0]);
/// }
/// ```
///
/// Note, however, that APIs don't need to be generic. In many cases taking a `&mut [u8]` or
/// `&mut Vec<u8>`, for example, is the better choice (callers need to pass the correct type then).
#[stable(feature = "rust1", since = "1.0.0")]
#[cfg_attr(not(test), rustc_diagnostic_item = "AsMut")]
pub trait AsMut<T: ?Sized> {
    /// Converts this type into a mutable reference of the (usually inferred) input type.
    #[stable(feature = "rust1", since = "1.0.0")]
    fn as_mut(&mut self) -> &mut T;
}

/// A value-to-value conversion that consumes the input value. The
/// opposite of [`From`].
///
/// One should avoid implementing [`Into`] and implement [`From`] instead.
/// Implementing [`From`] automatically provides one with an implementation of [`Into`]
/// thanks to the blanket implementation in the standard library.
///
/// Prefer using [`Into`] over [`From`] when specifying trait bounds on a generic function
/// to ensure that types that only implement [`Into`] can be used as well.
///
/// **Note: This trait must not fail**. If the conversion can fail, use [`TryInto`].
///
/// # Generic Implementations
///
/// - [`From`]`<T> for U` implies `Into<U> for T`
/// - [`Into`] is reflexive, which means that `Into<T> for T` is implemented
///
/// # Implementing [`Into`] for conversions to external types in old versions of Rust
///
/// Prior to Rust 1.41, if the destination type was not part of the current crate
/// then you couldn't implement [`From`] directly.
/// For example, take this code:
///
/// ```
/// struct Wrapper<T>(Vec<T>);
/// impl<T> From<Wrapper<T>> for Vec<T> {
///     fn from(w: Wrapper<T>) -> Vec<T> {
///         w.0
///     }
/// }
/// ```
/// This will fail to compile in older versions of the language because Rust's orphaning rules
/// used to be a little bit more strict. To bypass this, you could implement [`Into`] directly:
///
/// ```
/// struct Wrapper<T>(Vec<T>);
/// impl<T> Into<Vec<T>> for Wrapper<T> {
///     fn into(self) -> Vec<T> {
///         self.0
///     }
/// }
/// ```
///
/// It is important to understand that [`Into`] does not provide a [`From`] implementation
/// (as [`From`] does with [`Into`]). Therefore, you should always try to implement [`From`]
/// and then fall back to [`Into`] if [`From`] can't be implemented.
///
/// # Examples
///
/// [`String`] implements [`Into`]`<`[`Vec`]`<`[`u8`]`>>`:
///
/// In order to express that we want a generic function to take all arguments that can be
/// converted to a specified type `T`, we can use a trait bound of [`Into`]`<T>`.
/// For example: The function `is_hello` takes all arguments that can be converted into a
/// [`Vec`]`<`[`u8`]`>`.
///
/// ```
/// fn is_hello<T: Into<Vec<u8>>>(s: T) {
///    let bytes = b"hello".to_vec();
///    assert_eq!(bytes, s.into());
/// }
///
/// let s = "hello".to_string();
/// is_hello(s);
/// ```
///
/// [`String`]: ../../std/string/struct.String.html
/// [`Vec`]: ../../std/vec/struct.Vec.html
#[rustc_diagnostic_item = "Into"]
#[stable(feature = "rust1", since = "1.0.0")]
pub trait Into<T>: Sized {
    /// Converts this type into the (usually inferred) input type.
    #[must_use]
    #[stable(feature = "rust1", since = "1.0.0")]
    fn into(self) -> T;
}

/// Used to do value-to-value conversions while consuming the input value. It is the reciprocal of
/// [`Into`].
///
/// One should always prefer implementing `From` over [`Into`]
/// because implementing `From` automatically provides one with an implementation of [`Into`]
/// thanks to the blanket implementation in the standard library.
///
/// Only implement [`Into`] when targeting a version prior to Rust 1.41 and converting to a type
/// outside the current crate.
/// `From` was not able to do these types of conversions in earlier versions because of Rust's
/// orphaning rules.
/// See [`Into`] for more details.
///
/// Prefer using [`Into`] over using `From` when specifying trait bounds on a generic function.
/// This way, types that directly implement [`Into`] can be used as arguments as well.
///
/// The `From` is also very useful when performing error handling. When constructing a function
/// that is capable of failing, the return type will generally be of the form `Result<T, E>`.
/// The `From` trait simplifies error handling by allowing a function to return a single error type
/// that encapsulate multiple error types. See the "Examples" section and [the book][book] for more
/// details.
///
/// **Note: This trait must not fail**. The `From` trait is intended for perfect conversions.
/// If the conversion can fail or is not perfect, use [`TryFrom`].
///
/// # Generic Implementations
///
/// - `From<T> for U` implies [`Into`]`<U> for T`
/// - `From` is reflexive, which means that `From<T> for T` is implemented
///
/// # When to implement `From`
///
/// While there's no technical restrictions on which conversions can be done using
/// a `From` implementation, the general expectation is that the conversions
/// should typically be restricted as follows:
///
/// * The conversion is *infallible*: if the conversion can fail, use [`TryFrom`]
///   instead; don't provide a `From` impl that panics.
///
/// * The conversion is *lossless*: semantically, it should not lose or discard
///   information. For example, `i32: From<u16>` exists, where the original
///   value can be recovered using `u16: TryFrom<i32>`.  And `String: From<&str>`
///   exists, where you can get something equivalent to the original value via
///   `Deref`.  But `From` cannot be used to convert from `u32` to `u16`, since
///   that cannot succeed in a lossless way.  (There's some wiggle room here for
///   information not considered semantically relevant.  For example,
///   `Box<[T]>: From<Vec<T>>` exists even though it might not preserve capacity,
///   like how two vectors can be equal despite differing capacities.)
///
/// * The conversion is *value-preserving*: the conceptual kind and meaning of
///   the resulting value is the same, even though the Rust type and technical
///   representation might be different.  For example `-1_i8 as u8` is *lossless*,
///   since `as` casting back can recover the original value, but that conversion
///   is *not* available via `From` because `-1` and `255` are different conceptual
///   values (despite being identical bit patterns technically).  But
///   `f32: From<i16>` *is* available because `1_i16` and `1.0_f32` are conceptually
///   the same real number (despite having very different bit patterns technically).
///   `String: From<char>` is available because they're both *text*, but
///   `String: From<u32>` is *not* available, since `1` (a number) and `"1"`
///   (text) are too different.  (Converting values to text is instead covered
///   by the [`Display`](crate::fmt::Display) trait.)
///
/// * The conversion is *obvious*: it's the only reasonable conversion between
///   the two types.  Otherwise it's better to have it be a named method or
///   constructor, like how [`str::as_bytes`] is a method and how integers have
///   methods like [`u32::from_ne_bytes`], [`u32::from_le_bytes`], and
///   [`u32::from_be_bytes`], none of which are `From` implementations.  Whereas
///   there's only one reasonable way to wrap an [`Ipv6Addr`](crate::net::Ipv6Addr)
///   into an [`IpAddr`](crate::net::IpAddr), thus `IpAddr: From<Ipv6Addr>` exists.
///
/// # Examples
///
/// [`String`] implements `From<&str>`:
///
/// An explicit conversion from a `&str` to a String is done as follows:
///
/// ```
/// let string = "hello".to_string();
/// let other_string = String::from("hello");
///
/// assert_eq!(string, other_string);
/// ```
///
/// While performing error handling it is often useful to implement `From` for your own error type.
/// By converting underlying error types to our own custom error type that encapsulates the
/// underlying error type, we can return a single error type without losing information on the
/// underlying cause. The '?' operator automatically converts the underlying error type to our
/// custom error type with `From::from`.
///
/// ```
/// use std::fs;
/// use std::io;
/// use std::num;
///
/// enum CliError {
///     IoError(io::Error),
///     ParseError(num::ParseIntError),
/// }
///
/// impl From<io::Error> for CliError {
///     fn from(error: io::Error) -> Self {
///         CliError::IoError(error)
///     }
/// }
///
/// impl From<num::ParseIntError> for CliError {
///     fn from(error: num::ParseIntError) -> Self {
///         CliError::ParseError(error)
///     }
/// }
///
/// fn open_and_parse_file(file_name: &str) -> Result<i32, CliError> {
///     let mut contents = fs::read_to_string(&file_name)?;
///     let num: i32 = contents.trim().parse()?;
///     Ok(num)
/// }
/// ```
///
/// [`String`]: ../../std/string/struct.String.html
/// [`from`]: From::from
/// [book]: ../../book/ch09-00-error-handling.html
#[rustc_diagnostic_item = "From"]
#[stable(feature = "rust1", since = "1.0.0")]
#[rustc_on_unimplemented(on(
    all(_Self = "&str", T = "alloc::string::String"),
    note = "to coerce a `{T}` into a `{Self}`, use `&*` as a prefix",
))]
pub trait From<T>: Sized {
    /// Converts to this type from the input type.
    #[rustc_diagnostic_item = "from_fn"]
    #[must_use]
    #[stable(feature = "rust1", since = "1.0.0")]
    fn from(value: T) -> Self;
}

/// An attempted conversion that consumes `self`, which may or may not be
/// expensive.
///
/// Library authors should usually not directly implement this trait,
/// but should prefer implementing the [`TryFrom`] trait, which offers
/// greater flexibility and provides an equivalent `TryInto`
/// implementation for free, thanks to a blanket implementation in the
/// standard library. For more information on this, see the
/// documentation for [`Into`].
///
/// # Implementing `TryInto`
///
/// This suffers the same restrictions and reasoning as implementing
/// [`Into`], see there for details.
#[rustc_diagnostic_item = "TryInto"]
#[stable(feature = "try_from", since = "1.34.0")]
pub trait TryInto<T>: Sized {
    /// The type returned in the event of a conversion error.
    #[stable(feature = "try_from", since = "1.34.0")]
    type Error;

    /// Performs the conversion.
    #[stable(feature = "try_from", since = "1.34.0")]
    fn try_into(self) -> Result<T, Self::Error>;
}

/// Simple and safe type conversions that may fail in a controlled
/// way under some circumstances. It is the reciprocal of [`TryInto`].
///
/// This is useful when you are doing a type conversion that may
/// trivially succeed but may also need special handling.
/// For example, there is no way to convert an [`i64`] into an [`i32`]
/// using the [`From`] trait, because an [`i64`] may contain a value
/// that an [`i32`] cannot represent and so the conversion would lose data.
/// This might be handled by truncating the [`i64`] to an [`i32`] or by
/// simply returning [`i32::MAX`], or by some other method.  The [`From`]
/// trait is intended for perfect conversions, so the `TryFrom` trait
/// informs the programmer when a type conversion could go bad and lets
/// them decide how to handle it.
///
/// # Generic Implementations
///
/// - `TryFrom<T> for U` implies [`TryInto`]`<U> for T`
/// - [`try_from`] is reflexive, which means that `TryFrom<T> for T`
/// is implemented and cannot fail -- the associated `Error` type for
/// calling `T::try_from()` on a value of type `T` is [`Infallible`].
/// When the [`!`] type is stabilized [`Infallible`] and [`!`] will be
/// equivalent.
///
/// `TryFrom<T>` can be implemented as follows:
///
/// ```
/// struct GreaterThanZero(i32);
///
/// impl TryFrom<i32> for GreaterThanZero {
///     type Error = &'static str;
///
///     fn try_from(value: i32) -> Result<Self, Self::Error> {
///         if value <= 0 {
///             Err("GreaterThanZero only accepts values greater than zero!")
///         } else {
///             Ok(GreaterThanZero(value))
///         }
///     }
/// }
/// ```
///
/// # Examples
///
/// As described, [`i32`] implements `TryFrom<`[`i64`]`>`:
///
/// ```
/// let big_number = 1_000_000_000_000i64;
/// // Silently truncates `big_number`, requires detecting
/// // and handling the truncation after the fact.
/// let smaller_number = big_number as i32;
/// assert_eq!(smaller_number, -727379968);
///
/// // Returns an error because `big_number` is too big to
/// // fit in an `i32`.
/// let try_smaller_number = i32::try_from(big_number);
/// assert!(try_smaller_number.is_err());
///
/// // Returns `Ok(3)`.
/// let try_successful_smaller_number = i32::try_from(3);
/// assert!(try_successful_smaller_number.is_ok());
/// ```
///
/// [`try_from`]: TryFrom::try_from
#[rustc_diagnostic_item = "TryFrom"]
#[stable(feature = "try_from", since = "1.34.0")]
pub trait TryFrom<T>: Sized {
    /// The type returned in the event of a conversion error.
    #[stable(feature = "try_from", since = "1.34.0")]
    type Error;

    /// Performs the conversion.
    #[stable(feature = "try_from", since = "1.34.0")]
    #[rustc_diagnostic_item = "try_from_fn"]
    fn try_from(value: T) -> Result<Self, Self::Error>;
}

////////////////////////////////////////////////////////////////////////////////
// GENERIC IMPLS
////////////////////////////////////////////////////////////////////////////////

// As lifts over &
#[stable(feature = "rust1", since = "1.0.0")]
impl<T: ?Sized, U: ?Sized> AsRef<U> for &T
where
    T: AsRef<U>,
{
    #[inline]
    fn as_ref(&self) -> &U {
        <T as AsRef<U>>::as_ref(*self)
    }
}

// As lifts over &mut
#[stable(feature = "rust1", since = "1.0.0")]
impl<T: ?Sized, U: ?Sized> AsRef<U> for &mut T
where
    T: AsRef<U>,
{
    #[inline]
    fn as_ref(&self) -> &U {
        <T as AsRef<U>>::as_ref(*self)
    }
}

// FIXME (#45742): replace the above impls for &/&mut with the following more general one:
// // As lifts over Deref
// impl<D: ?Sized + Deref<Target: AsRef<U>>, U: ?Sized> AsRef<U> for D {
//     fn as_ref(&self) -> &U {
//         self.deref().as_ref()
//     }
// }

// AsMut lifts over &mut
#[stable(feature = "rust1", since = "1.0.0")]
impl<T: ?Sized, U: ?Sized> AsMut<U> for &mut T
where
    T: AsMut<U>,
{
    #[inline]
    fn as_mut(&mut self) -> &mut U {
        (*self).as_mut()
    }
}

// FIXME (#45742): replace the above impl for &mut with the following more general one:
// // AsMut lifts over DerefMut
// impl<D: ?Sized + Deref<Target: AsMut<U>>, U: ?Sized> AsMut<U> for D {
//     fn as_mut(&mut self) -> &mut U {
//         self.deref_mut().as_mut()
//     }
// }

// From implies Into
#[stable(feature = "rust1", since = "1.0.0")]
impl<T, U> Into<U> for T
where
    U: From<T>,
{
    /// Calls `U::from(self)`.
    ///
    /// That is, this conversion is whatever the implementation of
    /// <code>[From]&lt;T&gt; for U</code> chooses to do.
    #[inline]
    #[track_caller]
    fn into(self) -> U {
        U::from(self)
    }
}

// From (and thus Into) is reflexive
#[stable(feature = "rust1", since = "1.0.0")]
impl<T> From<T> for T {
    /// Returns the argument unchanged.
    #[inline(always)]
    fn from(t: T) -> T {
        t
    }
}

/// **Stability note:** This impl does not yet exist, but we are
/// "reserving space" to add it in the future. See
/// [rust-lang/rust#64715][#64715] for details.
///
/// [#64715]: https://github.com/rust-lang/rust/issues/64715
#[stable(feature = "convert_infallible", since = "1.34.0")]
#[allow(unused_attributes)] // FIXME(#58633): do a principled fix instead.
#[rustc_reservation_impl = "permitting this impl would forbid us from adding \
                            `impl<T> From<!> for T` later; see rust-lang/rust#64715 for details"]
impl<T> From<!> for T {
    fn from(t: !) -> T {
        t
    }
}

// TryFrom implies TryInto
#[stable(feature = "try_from", since = "1.34.0")]
impl<T, U> TryInto<U> for T
where
    U: TryFrom<T>,
{
    type Error = U::Error;

    #[inline]
    fn try_into(self) -> Result<U, U::Error> {
        U::try_from(self)
    }
}

// Infallible conversions are semantically equivalent to fallible conversions
// with an uninhabited error type.
#[stable(feature = "try_from", since = "1.34.0")]
impl<T, U> TryFrom<U> for T
where
    U: Into<T>,
{
    type Error = Infallible;

    #[inline]
    fn try_from(value: U) -> Result<Self, Self::Error> {
        Ok(U::into(value))
    }
}

////////////////////////////////////////////////////////////////////////////////
// CONCRETE IMPLS
////////////////////////////////////////////////////////////////////////////////

#[stable(feature = "rust1", since = "1.0.0")]
impl<T> AsRef<[T]> for [T] {
    #[inline(always)]
    fn as_ref(&self) -> &[T] {
        self
    }
}

#[stable(feature = "rust1", since = "1.0.0")]
impl<T> AsMut<[T]> for [T] {
    #[inline(always)]
    fn as_mut(&mut self) -> &mut [T] {
        self
    }
}

#[stable(feature = "rust1", since = "1.0.0")]
impl AsRef<str> for str {
    #[inline(always)]
    fn as_ref(&self) -> &str {
        self
    }
}

#[stable(feature = "as_mut_str_for_str", since = "1.51.0")]
impl AsMut<str> for str {
    #[inline(always)]
    fn as_mut(&mut self) -> &mut str {
        self
    }
}

////////////////////////////////////////////////////////////////////////////////
// THE NO-ERROR ERROR TYPE
////////////////////////////////////////////////////////////////////////////////

/// The error type for errors that can never happen.
///
/// Since this enum has no variant, a value of this type can never actually exist.
/// This can be useful for generic APIs that use [`Result`] and parameterize the error type,
/// to indicate that the result is always [`Ok`].
///
/// For example, the [`TryFrom`] trait (conversion that returns a [`Result`])
/// has a blanket implementation for all types where a reverse [`Into`] implementation exists.
///
/// ```ignore (illustrates std code, duplicating the impl in a doctest would be an error)
/// impl<T, U> TryFrom<U> for T where U: Into<T> {
///     type Error = Infallible;
///
///     fn try_from(value: U) -> Result<Self, Infallible> {
///         Ok(U::into(value))  // Never returns `Err`
///     }
/// }
/// ```
///
/// # Future compatibility
///
/// This enum has the same role as [the `!` “never” type][never],
/// which is unstable in this version of Rust.
/// When `!` is stabilized, we plan to make `Infallible` a type alias to it:
///
/// ```ignore (illustrates future std change)
/// pub type Infallible = !;
/// ```
///
/// … and eventually deprecate `Infallible`.
///
/// However there is one case where `!` syntax can be used
/// before `!` is stabilized as a full-fledged type: in the position of a function’s return type.
/// Specifically, it is possible to have implementations for two different function pointer types:
///
/// ```
/// trait MyTrait {}
/// impl MyTrait for fn() -> ! {}
/// impl MyTrait for fn() -> std::convert::Infallible {}
/// ```
///
/// With `Infallible` being an enum, this code is valid.
/// However when `Infallible` becomes an alias for the never type,
/// the two `impl`s will start to overlap
/// and therefore will be disallowed by the language’s trait coherence rules.
#[stable(feature = "convert_infallible", since = "1.34.0")]
#[derive(Copy)]
pub enum Infallible {}

#[stable(feature = "convert_infallible", since = "1.34.0")]
impl Clone for Infallible {
    fn clone(&self) -> Infallible {
        match *self {}
    }
}

#[stable(feature = "convert_infallible", since = "1.34.0")]
impl fmt::Debug for Infallible {
    fn fmt(&self, _: &mut fmt::Formatter<'_>) -> fmt::Result {
        match *self {}
    }
}

#[stable(feature = "convert_infallible", since = "1.34.0")]
impl fmt::Display for Infallible {
    fn fmt(&self, _: &mut fmt::Formatter<'_>) -> fmt::Result {
        match *self {}
    }
}

#[stable(feature = "str_parse_error2", since = "1.8.0")]
impl Error for Infallible {
    fn description(&self) -> &str {
        match *self {}
    }
}

#[stable(feature = "convert_infallible", since = "1.34.0")]
impl PartialEq for Infallible {
    fn eq(&self, _: &Infallible) -> bool {
        match *self {}
    }
}

#[stable(feature = "convert_infallible", since = "1.34.0")]
impl Eq for Infallible {}

#[stable(feature = "convert_infallible", since = "1.34.0")]
impl PartialOrd for Infallible {
    fn partial_cmp(&self, _other: &Self) -> Option<crate::cmp::Ordering> {
        match *self {}
    }
}

#[stable(feature = "convert_infallible", since = "1.34.0")]
impl Ord for Infallible {
    fn cmp(&self, _other: &Self) -> crate::cmp::Ordering {
        match *self {}
    }
}

#[stable(feature = "convert_infallible", since = "1.34.0")]
impl From<!> for Infallible {
    #[inline]
    fn from(x: !) -> Self {
        x
    }
}

#[stable(feature = "convert_infallible_hash", since = "1.44.0")]
impl Hash for Infallible {
    fn hash<H: Hasher>(&self, _: &mut H) {
        match *self {}
    }
}